Submission #99021

# Submission time Handle Problem Language Result Execution time Memory
99021 2019-02-28T05:43:27 Z qkxwsm Factories (JOI14_factories) C++14
100 / 100
6505 ms 240516 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
#include "factories.h"

using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;

random_device(rd);
mt19937 rng(rd());
const long long FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();

struct custom_hash
{
	template<class T>
	unsigned long long operator()(T v) const
	{
		unsigned long long x = v;
		x += FIXED_RANDOM;
		// x += 11400714819323198485ull;
		// x = (x ^ (x >> 30)) * 13787848793156543929ull;
		x = (x ^ (x >> 27)) * 10723151780598845931ull;
		return x ^ (x >> 31);
	}
};

template<class T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<class T, class U> using hash_table = gp_hash_table<T, U, custom_hash>;

template<class T>
T randomize(T mod)
{
	return (uniform_int_distribution<T>(0, mod - 1))(rng);
}
template<class T>
void readi(T &x)
{
	x = 0;
	bool negative = false;
	char c = ' ';
	while (c < '-')
	{
		c = getchar();
	}
	if (c == '-')
	{
		negative = true;
		c = getchar();
	}
	while (c >= '0')
	{
		x = x * 10 + (c - '0');
		c = getchar();
	}
	if (negative)
	{
		x = -x;
	}
}
template<class T>
void printi(T output)
{
	if (output == 0)
	{
		putchar('0');
		return;
	}
	if (output < 0)
	{
		putchar('-');
		output = -output;
	}
	int buf[20], n = 0;
	while(output)
	{
		buf[n] = ((output % 10));
		output /= 10;
		n++;
	}
	for (n--; n >= 0; n--)
	{
		putchar(buf[n] + '0');
	}
	return;
}
template<class T>
void ckmin(T &a, T b)
{
	a = min(a, b);
}
template<class T>
void ckmax(T &a, T b)
{
	a = max(a, b);
}
long long expo(long long a, long long e, long long mod)
{
	return ((e == 0) ? 1 : ((expo(a * a % mod, e >> 1, mod)) * ((e & 1) ? a : 1) % mod));
}
template<class T, class U>
void nmod(T &x, U mod)
{
	if (x >= mod) x -= mod;
}
template<class T>
T gcd(T a, T b)
{
	return (b ? gcd(b, a % b) : a);
}

#define y0 ___y0
#define y1 ___y1
#define MP make_pair
#define PB push_back
#define LB lower_bound
#define UB upper_bound
#define fi first
#define se second
#define DBG(x) cerr << #x << " = " << (x) << endl
#define SZ(x) ((int) ((x).size()))
#define FOR(i, a, b) for (auto i = (a); i < (b); i++)
#define FORD(i, a, b) for (auto i = (a) - 1; i >= (b); i--)
#define ALL(x) (x).begin(), (x).end()

const long double PI = 4.0 * atan(1.0);
const long double EPS = 1e-9;

#define MAGIC 347
#define SINF 10007
#define CO 1000007
#define INF 1000000007
#define BIG 1000000931
#define LARGE 1696969696967ll
#define GIANT 2564008813937411ll
#define LLINF 2696969696969696969ll
#define MAXN 500013

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<ld, ld> pdd;
typedef vector<int> vi;
typedef vector<ll> vl;
typedef vector<ld> vd;
typedef vector<pii> vpi;
typedef vector<pll> vpl;
typedef vector<pdd> vpd;

int N, M, T;
vpl edge[MAXN], edge1[MAXN];
int parent[MAXN], depth[MAXN];
int parent1[MAXN];
int mintable[25][2 * MAXN];
int ord[2 * MAXN], rord[2 * MAXN];
int st[MAXN], ft[MAXN];
ll dis[MAXN];
ll dp[2][MAXN];
int ed[MAXN];
vi L, R, V, pts;
ll ans;

int comb1(int a, int b)
{
	return (depth[ord[a]] < depth[ord[b]] ? a : b);
}
int lca(int u, int v)
{
	u = rord[u]; v = rord[v];
	if (u > v) swap(u, v);
	int sz = 31 - __builtin_clz(v - u + 1);
	int res = ord[comb1(mintable[sz][u], mintable[sz][v - (1 << sz) + 1])];
	return res;
}
void dfs(int u)
{
	ord[M] = u;
	rord[u] = M;
	M++;
	st[u] = T;
	ft[u] = T;
	T++;
	for (pii p : edge[u])
	{
		int v = p.se;
		if (v == parent[u]) continue;
		parent[v] = u;
		depth[v] = depth[u] + 1;
		dis[v] = dis[u] + p.fi;
		dfs(v);
		ft[u] = ft[v];
		ord[M] = u;
		M++;
	}
}
ll dist(int u, int v)
{
	// cerr << u << ' ' << v << ' ' << lca(u, v) << endl;
	return dis[u] + dis[v] - 2 * dis[lca(u, v)];
}
void Init(int n, int A[], int B[], int D[])
{
	N = n;
	FOR(i, 0, N - 1)
	{
		int u = A[i], v = B[i], d = D[i];
		edge[u].PB({d, v});
		edge[v].PB({d, u});
	}
	parent[0] = N;
	dfs(0);
	FOR(i, 0, M)
	{
		mintable[0][i] = i;
	}
	FOR(j, 1, 21)
	{
		FOR(i, 0, M)
		{
			mintable[j][i] = mintable[j - 1][i];
			if (i + (1 << (j - 1)) < M)
			{
				mintable[j][i] = comb1(mintable[j][i], mintable[j - 1][i + (1 << (j - 1))]);
			}
		}
	}
	FOR(i, 0, N)
	{
		dp[0][i] = dp[1][i] = LLINF;
		parent1[i] = N;
		ed[i] = -1;
	}
}
bool cmp(int a, int b)
{
	return st[a] < st[b];
}
int ok(int idx)
{
	int u = V[idx];
	int e;
	// cerr << "hi " << u << ' ' << parent1[u] << endl;
	for (e = idx + 1; e < SZ(V) && st[u] <= st[V[e]] && st[V[e]] <= ft[u]; )
	{
		int v = V[e];
		ll d = dis[v] - dis[u];
		edge1[u].PB({d, v});
		edge1[v].PB({d, u});
		parent1[v] = u;
		// cerr << " parent1 " << v << " = " << u << endl;
		e = ok(e);
	}
	return e;
}
void go(int u)
{
	for (pll p : edge1[u])
	{
		int v = p.se; ll d = p.fi;
		if (v == parent1[u]) continue;
		// cerr << u << " -> " << v << ' ' << parent1[u] << endl;
		go(v);
		ckmin(dp[0][u], dp[0][v] + d);
		ckmin(dp[1][u], dp[1][v] + d);
	}
	if (ed[u] == 0) dp[0][u] = 0;
	if (ed[u] == 1) dp[1][u] = 0;
}
void go1(int u)
{
	for (pll p : edge1[u])
	{
		int v = p.se; ll d = p.fi;
		if (v == parent1[u]) continue;
		ckmin(dp[0][v], dp[0][u] + d);
		ckmin(dp[1][v], dp[1][u] + d);
		go1(v);
	}
}


long long Query(int S, int X[], int T, int Y[])
{
	FOR(i, 0, S) L.PB(X[i]);
	FOR(i, 0, T) R.PB(Y[i]);
	for (int u : L)
	{
		pts.PB(u);
		ed[u] = 0;
	}
	for (int u : R)
	{
		pts.PB(u);
		ed[u] = 1;
	}
	sort(ALL(pts), cmp);
	FOR(i, 0, SZ(pts))
	{
		V.PB(pts[i]);
		if (i)
		{
			int x = lca(pts[i - 1], pts[i]);
			V.PB(x);
		}
	}
	sort(ALL(V), cmp);
	V.erase(unique(ALL(V)), V.end());
	ok(0);
	go(V[0]);
	go1(V[0]);
	// priority_queue<pll, vector<pll>, greater<pll> > pq;
	// for (int u : L)
	// {
	// 	dp[0][u] = 0;
	// 	pq.push({0, u});
	// }
	// while(!pq.empty())
	// {
	// 	ll d = pq.top().fi, u = pq.top().se;
	// 	pq.pop();
	// 	if (d != dp[0][u]) continue;
	// 	for (pll p : edge1[u])
	// 	{
	// 		int u = p.se; ll nd = d + p.fi;
	// 		if (nd < dp[0][u])
	// 		{
	// 			dp[0][u] = nd;
	// 			pq.push({nd, u});
	// 		}
	// 	}
	// }
	// for (int u : R)
	// {
	// 	dp[1][u] = 0;
	// 	pq.push({0, u});
	// }
	// while(!pq.empty())
	// {
	// 	ll d = pq.top().fi, u = pq.top().se;
	// 	pq.pop();
	// 	if (d != dp[1][u]) continue;
	// 	for (pll p : edge1[u])
	// 	{
	// 		int u = p.se; ll nd = d + p.fi;
	// 		if (nd < dp[1][u])
	// 		{
	// 			dp[1][u] = nd;
	// 			pq.push({nd, u});
	// 		}
	// 	}
	// }
	ans = LLINF;
	for (int u : V)
	{
		ckmin(ans, dp[0][u] + dp[1][u]);
	}
	for (int u : V)
	{
		dp[0][u] = LLINF;
		dp[1][u] = LLINF;
		ed[u] = -1;
		edge1[u].clear();
		parent1[u] = N;
	}
	L.clear();
	R.clear();
	pts.clear();
	V.clear();
	//u need to build the tree!
	return ans;
}

/* READ READ READ
* int overflow, maxn too small, special cases (n=1?, two distinct?), cin.tie() interactive
* reread the problem, try small cases
* note down possible sources of error as you go
* do smth instead of nothing
*/
# Verdict Execution time Memory Grader output
1 Correct 41 ms 24576 KB Output is correct
2 Correct 1208 ms 35456 KB Output is correct
3 Correct 1088 ms 35192 KB Output is correct
4 Correct 1253 ms 35312 KB Output is correct
5 Correct 773 ms 35448 KB Output is correct
6 Correct 695 ms 35112 KB Output is correct
7 Correct 1044 ms 35112 KB Output is correct
8 Correct 1026 ms 35356 KB Output is correct
9 Correct 829 ms 35448 KB Output is correct
10 Correct 743 ms 35064 KB Output is correct
11 Correct 1098 ms 35068 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 28 ms 24316 KB Output is correct
2 Correct 2573 ms 188672 KB Output is correct
3 Correct 2832 ms 190588 KB Output is correct
4 Correct 2100 ms 186304 KB Output is correct
5 Correct 2645 ms 210728 KB Output is correct
6 Correct 2936 ms 192408 KB Output is correct
7 Correct 2511 ms 66808 KB Output is correct
8 Correct 1935 ms 66380 KB Output is correct
9 Correct 2201 ms 70844 KB Output is correct
10 Correct 2653 ms 67928 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 24576 KB Output is correct
2 Correct 1208 ms 35456 KB Output is correct
3 Correct 1088 ms 35192 KB Output is correct
4 Correct 1253 ms 35312 KB Output is correct
5 Correct 773 ms 35448 KB Output is correct
6 Correct 695 ms 35112 KB Output is correct
7 Correct 1044 ms 35112 KB Output is correct
8 Correct 1026 ms 35356 KB Output is correct
9 Correct 829 ms 35448 KB Output is correct
10 Correct 743 ms 35064 KB Output is correct
11 Correct 1098 ms 35068 KB Output is correct
12 Correct 28 ms 24316 KB Output is correct
13 Correct 2573 ms 188672 KB Output is correct
14 Correct 2832 ms 190588 KB Output is correct
15 Correct 2100 ms 186304 KB Output is correct
16 Correct 2645 ms 210728 KB Output is correct
17 Correct 2936 ms 192408 KB Output is correct
18 Correct 2511 ms 66808 KB Output is correct
19 Correct 1935 ms 66380 KB Output is correct
20 Correct 2201 ms 70844 KB Output is correct
21 Correct 2653 ms 67928 KB Output is correct
22 Correct 6185 ms 199328 KB Output is correct
23 Correct 5048 ms 225096 KB Output is correct
24 Correct 6505 ms 226512 KB Output is correct
25 Correct 6065 ms 229716 KB Output is correct
26 Correct 5921 ms 220048 KB Output is correct
27 Correct 5008 ms 240516 KB Output is correct
28 Correct 3691 ms 218928 KB Output is correct
29 Correct 5545 ms 219128 KB Output is correct
30 Correct 5927 ms 218708 KB Output is correct
31 Correct 5827 ms 219064 KB Output is correct
32 Correct 2636 ms 89516 KB Output is correct
33 Correct 1981 ms 84480 KB Output is correct
34 Correct 2517 ms 79188 KB Output is correct
35 Correct 2928 ms 79096 KB Output is correct
36 Correct 2916 ms 79588 KB Output is correct
37 Correct 2998 ms 79524 KB Output is correct