#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl
#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)
template<typename T>
void amin(T &a, T b) {
a = min(a,b);
}
template<typename T>
void amax(T &a, T b) {
a = max(a,b);
}
#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif
/*
design idea:
build a chain of length = k, k is the smallest num s.t 2^k >= n
each of them are connected to each other by Y edges
if the root is visited x times, then:
1st subtree visited x/2 times,
2nd subtree visited x/4 times,
3rd subtree visited x/8 times,
...
decompose n into pows of 2
for each pow of 2, build a binary tree in the corresponding position on the chain
eg: a binary tree of size 2^(k-1) goes on the first position in the chain, size 2^(k-2) goes on the 2nd position etc
there are exactly n binary tree nodes in total
each node corresponds to the state after visiting the first i triggers
the state for each node can be found by simulating the ball from the root
if cnt no.of vals have been visited before reaching a leaf node (including the current node), then the current node is a[cnt-1], so it has to be connected to a[cnt]
if cnt == n, then it means that this node is the last node
so connect it to the root of the chain (after this, no leaf node is every encountered, and the ball leaves the Y exit of the last node on the chain to reach 0)
when the ball leaves by the Y exit of the last node on the chain, all switches would have state X
we also use <= n+log2(n) nodes (~n for the bin.tree, ~log2(n) for the chain)
so the construction is valid
*/
const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;
#include "doll.h"
void create_circuit(int m, std::vector<int> a) {
// int N = A.size();
// std::vector<int> C(M + 1);
// C[0] = -1;
// for (int i = 1; i <= M; ++i) {
// C[i] = 1;
// }
// std::vector<int> X(N), Y(N);
// for (int k = 0; k < N; ++k) {
// X[k] = Y[k] = A[k];
// }
// answer(C, X, Y);
int n = sz(a);
a.pb(0);
vector<int> b(m+1);
b[0] = a[0];
vector<int> sx(1), sy(1), leaf(1), flipped(1);
int siz = 1;
while(siz <= n) siz <<= 1;
int chain_siz = __lg(siz);
int root = 1;
rep1(i,m){
b[i] = -root;
}
b[0] = a[0];
rep1(i,chain_siz){
sx.pb(0), sy.pb(0);
}
rep1(i,chain_siz-1){
sx[root-1+i] = -root;
sy[root-1+i] = -(root+i);
}
sx[root-1+chain_siz] = -root;
sy[root-1+chain_siz] = 0;
rev(bit,chain_siz-1,0){
if(!(n&(1<<bit))) conts;
if(!bit){
while(sz(leaf) < sz(sx)){
leaf.pb(0);
}
leaf[root-1+chain_siz] = 1;
conts;
}
// build bin tree, depth = bit-1
int pos_on_chain = root-1+chain_siz-bit;
int ptr = sz(sx);
sx.pb(-root), sy.pb(-root);
sx[pos_on_chain] = -ptr;
queue<pii> q;
q.push({ptr,0});
while(!q.empty()){
auto [u,d] = q.front();
q.pop();
if(d >= bit-1){
while(sz(leaf) < sz(sx)){
leaf.pb(0);
}
leaf[u] = 1;
conts;
}
sx[u] = -sz(sx);
sy[u] = -(sz(sx)+1);
sx.pb(-root), sy.pb(-root);
sx.pb(-root), sy.pb(-root);
q.push({-sx[u],d+1});
q.push({-sy[u],d+1});
}
}
while(sz(flipped) < sz(sx)){
flipped.pb(0);
}
int ptr = root;
int cnt = 0;
while(true){
if(leaf[ptr]){
cnt++;
if(cnt == n) break;
flipped[ptr] ^= 1;
int nxt = a[cnt];
if(flipped[ptr]){
sx[ptr] = nxt;
}
else{
sy[ptr] = nxt;
}
ptr = root;
}
else{
flipped[ptr] ^= 1;
if(flipped[ptr]){
ptr = -sx[ptr];
}
else{
ptr = -sy[ptr];
}
}
}
sx.erase(sx.begin());
sy.erase(sy.begin());
int mx_allowed = n+__lg(n-1)+1;
assert(sz(sx) <= mx_allowed);
answer(b,sx,sy);
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
34 ms |
4216 KB |
Output is correct |
3 |
Correct |
32 ms |
3816 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
7 ms |
1628 KB |
Output is correct |
6 |
Correct |
48 ms |
5440 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
34 ms |
4216 KB |
Output is correct |
3 |
Correct |
32 ms |
3816 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
7 ms |
1628 KB |
Output is correct |
6 |
Correct |
48 ms |
5440 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
8 |
Correct |
62 ms |
6532 KB |
Output is correct |
9 |
Correct |
67 ms |
6784 KB |
Output is correct |
10 |
Correct |
93 ms |
9444 KB |
Output is correct |
11 |
Correct |
0 ms |
348 KB |
Output is correct |
12 |
Correct |
0 ms |
348 KB |
Output is correct |
13 |
Correct |
1 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
34 ms |
4216 KB |
Output is correct |
3 |
Correct |
32 ms |
3816 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
7 ms |
1628 KB |
Output is correct |
6 |
Correct |
48 ms |
5440 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
8 |
Correct |
62 ms |
6532 KB |
Output is correct |
9 |
Correct |
67 ms |
6784 KB |
Output is correct |
10 |
Correct |
93 ms |
9444 KB |
Output is correct |
11 |
Correct |
0 ms |
348 KB |
Output is correct |
12 |
Correct |
0 ms |
348 KB |
Output is correct |
13 |
Correct |
1 ms |
348 KB |
Output is correct |
14 |
Correct |
96 ms |
9044 KB |
Output is correct |
15 |
Correct |
59 ms |
6004 KB |
Output is correct |
16 |
Correct |
90 ms |
8936 KB |
Output is correct |
17 |
Correct |
0 ms |
348 KB |
Output is correct |
18 |
Correct |
0 ms |
348 KB |
Output is correct |
19 |
Correct |
0 ms |
600 KB |
Output is correct |
20 |
Correct |
89 ms |
9352 KB |
Output is correct |
21 |
Correct |
1 ms |
348 KB |
Output is correct |
22 |
Correct |
0 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
1 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
344 KB |
Output is correct |
7 |
Correct |
1 ms |
348 KB |
Output is correct |
8 |
Correct |
0 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
56 ms |
5756 KB |
Output is correct |
3 |
Correct |
55 ms |
5764 KB |
Output is correct |
4 |
Correct |
96 ms |
8164 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
56 ms |
5756 KB |
Output is correct |
3 |
Correct |
55 ms |
5764 KB |
Output is correct |
4 |
Correct |
96 ms |
8164 KB |
Output is correct |
5 |
Correct |
88 ms |
8680 KB |
Output is correct |
6 |
Correct |
86 ms |
8616 KB |
Output is correct |
7 |
Correct |
100 ms |
8868 KB |
Output is correct |
8 |
Correct |
85 ms |
8312 KB |
Output is correct |
9 |
Correct |
62 ms |
5748 KB |
Output is correct |
10 |
Correct |
84 ms |
8424 KB |
Output is correct |
11 |
Correct |
82 ms |
8164 KB |
Output is correct |
12 |
Correct |
60 ms |
6012 KB |
Output is correct |
13 |
Correct |
57 ms |
5800 KB |
Output is correct |
14 |
Correct |
57 ms |
5948 KB |
Output is correct |
15 |
Correct |
59 ms |
6004 KB |
Output is correct |
16 |
Correct |
2 ms |
600 KB |
Output is correct |
17 |
Correct |
54 ms |
6832 KB |
Output is correct |
18 |
Correct |
56 ms |
5756 KB |
Output is correct |
19 |
Correct |
55 ms |
5756 KB |
Output is correct |
20 |
Correct |
86 ms |
8412 KB |
Output is correct |
21 |
Correct |
83 ms |
8164 KB |
Output is correct |
22 |
Correct |
86 ms |
8172 KB |
Output is correct |