답안 #926963

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
926963 2024-02-14T05:53:31 Z GrindMachine 자동 인형 (IOI18_doll) C++17
53 / 100
116 ms 14888 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*



*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

#include "doll.h"

void create_circuit(int m, std::vector<int> a) {
    // int N = A.size();
    // std::vector<int> C(M + 1);
    // C[0] = -1;
    // for (int i = 1; i <= M; ++i) {
    //     C[i] = 1;
    // }
    // std::vector<int> X(N), Y(N);
    // for (int k = 0; k < N; ++k) {
    //     X[k] = Y[k] = A[k];
    // }
    // answer(C, X, Y);

    int n = sz(a);
    vector<int> b(m+1);

    vector<int> pos[m+1];
    rep(i,n) pos[a[i]].pb(i);
    
    vector<int> root(m+1);
    vector<int> sx(1), sy(1), flipped;
    int switch_ptr = 1;

    rep1(i,m){
        if(sz(pos[i]) <= 1) conts;
        root[i] = -switch_ptr;
        sx.pb(0), sy.pb(0);
        switch_ptr++;
    }

    b[0] = a[0];
    rep(i,n){
        b[a[i]] = root[a[i]];
    }

    ll last_guy = inf2, last_type = inf2;
    vector<pll> pending;

    rep1(x,m){
        if(pos[x].empty()) conts;
        auto &p = pos[x];
        int c = sz(p);
        if(c == 1){
            ll i = p[0];
            if(i+1 < n){
                b[x] = a[i+1];
            }
            else{
                last_guy = x;
            }

            conts;
        }

        int siz = 1;
        while(siz < c) siz <<= 1;

        queue<pll> q;
        q.push({root[x],0});
        ll depth = __lg(siz)-1;

        while(!q.empty()){
            auto [u,d] = q.front();
            q.pop();
            if(d >= depth) conts;

            sx[-u] = -switch_ptr;
            sx.pb(0), sy.pb(0);
            switch_ptr++;

            sy[-u] = -switch_ptr;
            sx.pb(0), sy.pb(0);
            switch_ptr++;

            q.push({sx[-u],d+1});
            q.push({sy[-u],d+1});
        }

        while(sz(flipped) < sz(sx)){
            flipped.pb(0);
        }

        rep1(iter,siz){
            int ptr = root[x];
            rep1(d,depth){
                flipped[-ptr] ^= 1;
                if(flipped[-ptr]){
                    ptr = sx[-ptr];
                }
                else{
                    ptr = sy[-ptr];
                }
            }

            if(iter <= c){
                ll i = p[iter-1];
                if(i+1 < n){
                    ll nxt = a[i+1];
                    flipped[-ptr] ^= 1;
                    if(flipped[-ptr]){
                        sx[-ptr] = nxt;
                    }
                    else{
                        sy[-ptr] = nxt;
                    }
                }
                else{
                    last_guy = ptr;
                    flipped[-ptr] ^= 1;
                    if(flipped[-ptr]){
                        last_type = 0;
                    }
                    else{
                        last_type = 1;
                    }
                }
            }
            else{
                ll nxt = 0;
                if(iter < siz){
                    nxt = root[x];
                    flipped[-ptr] ^= 1;
                    if(flipped[-ptr]){
                        sx[-ptr] = nxt;
                    }
                    else{
                        sy[-ptr] = nxt;
                    }
                }
                else{
                    flipped[-ptr] ^= 1;
                    pending.pb({root[x],ptr});
                }
            }
        }

        // rep1(iter,siz){
        //     ll ptr = 1;
        //     while(ptr < siz/2){
        //         flipped[ptr] ^= 1;
        //         if(flipped[ptr]){
        //             ptr = ptr*2;
        //         }
        //         else{
        //             ptr = ptr*2+1;
        //         }
        //     }

        //     ll nxt = 0;

        //     if(iter < c){
        //         nxt = 1;
        //     }
        //     else if(iter < siz){
        //         nxt = -1;
        //     }
        //     else{
        //         nxt = 0;
        //     }

        //     flipped[ptr] ^= 1;
        //     if(flipped[ptr]){
        //         sx[ptr] = nxt;
        //     }
        //     else{
        //         sy[ptr] = nxt;
        //     }
        // }
    }

    assert(accumulate(all(flipped),0ll) == 0);

    pending.pb({0,0});

    if(last_type == 0){
        sx[-last_guy] = pending.front().ff;
    }
    else if(last_type == 1){
        sy[-last_guy] = pending.front().ff;
    }
    else{
        b[last_guy] = pending.front().ff;
    }

    rep(i,sz(pending)-1){
        sy[-pending[i].ss] = pending[i+1].ff;
    }

    sx.erase(sx.begin());
    sy.erase(sy.begin());
    assert(switch_ptr <= 2*n);
    while(sz(sx) > 2*n){
        sx.pop_back();
        sy.pop_back();
    }
    
    answer(b,sx,sy);

    // rep1(i,siz/2-1){
    //     sx[i] = -(i*2);
    //     sy[i] = -(i*2+1);
    // }

    // rep1(iter,siz){
    //     ll ptr = 1;
    //     while(ptr < siz/2){
    //         flipped[ptr] ^= 1;
    //         if(flipped[ptr]){
    //             ptr = ptr*2;
    //         }
    //         else{
    //             ptr = ptr*2+1;
    //         }
    //     }

    //     ll nxt = 0;

    //     if(iter < n){
    //         nxt = 1;
    //     }
    //     else if(iter < siz){
    //         nxt = -1;
    //     }
    //     else{
    //         nxt = 0;
    //     }

    //     flipped[ptr] ^= 1;
    //     if(flipped[ptr]){
    //         sx[ptr] = nxt;
    //     }
    //     else{
    //         sy[ptr] = nxt;
    //     }
    // }

    // sx.erase(sx.begin());
    // sy.erase(sy.begin());

    // answer(b,sx,sy);

    // vector<int> cnt(m+1);
    // rep(i,n) cnt[a[i]]++;
    // rep(i,m+1){
    //     if(cnt[i] == 1){
    //         a.pb(i);
    //     }
    // }

    // auto on = n;
    // n = sz(a);
    // b[0] = a[0];
    // vector<int> switch_id(m+1,-1); // trigger i is connected to which switch?
    // int ptr = 1;

    // rep(i,n){
    //     int x = a[i];
    //     if(switch_id[x] == -1){
    //         switch_id[x] = ptr;
    //         b[x] = -ptr;
    //         sx.pb(0);
    //         sy.pb(0);
    //         if(i+1 < on){
    //             sx[ptr] = a[i+1];
    //         }
    //         else if(i+1 < n){
    //             sx[ptr] = -switch_id[a[i+1]];
    //         }
    //         ptr++;
    //     }
    //     else{
    //         b[x] = -switch_id[x];
    //         if(i+1 < on){
    //             sy[switch_id[x]] = a[i+1];
    //         }
    //         else if(i+1 < n){
    //             sy[switch_id[x]] = -switch_id[a[i+1]];
    //         }
    //     }
    // }

    // sx.erase(sx.begin());
    // sy.erase(sy.begin());
    // debug(b);
    // debug(sx);
    // debug(sy);

    // answer(b,sx,sy);
}
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 20 ms 6856 KB Output is correct
3 Correct 16 ms 5468 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 8 ms 4188 KB Output is correct
6 Correct 25 ms 8216 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 20 ms 6856 KB Output is correct
3 Correct 16 ms 5468 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 8 ms 4188 KB Output is correct
6 Correct 25 ms 8216 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 35 ms 7896 KB Output is correct
9 Correct 38 ms 9304 KB Output is correct
10 Correct 56 ms 11868 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 20 ms 6856 KB Output is correct
3 Correct 16 ms 5468 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 8 ms 4188 KB Output is correct
6 Correct 25 ms 8216 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 35 ms 7896 KB Output is correct
9 Correct 38 ms 9304 KB Output is correct
10 Correct 56 ms 11868 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 77 ms 13172 KB Output is correct
15 Correct 39 ms 6348 KB Output is correct
16 Correct 55 ms 9532 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 63 ms 12072 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 392 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Incorrect 0 ms 348 KB Output isn't correct
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Partially correct 0 ms 344 KB Output is partially correct
2 Correct 48 ms 6100 KB Output is correct
3 Partially correct 89 ms 10180 KB Output is partially correct
4 Partially correct 95 ms 10952 KB Output is partially correct
# 결과 실행 시간 메모리 Grader output
1 Partially correct 0 ms 344 KB Output is partially correct
2 Correct 48 ms 6100 KB Output is correct
3 Partially correct 89 ms 10180 KB Output is partially correct
4 Partially correct 95 ms 10952 KB Output is partially correct
5 Partially correct 80 ms 14116 KB Output is partially correct
6 Partially correct 87 ms 14640 KB Output is partially correct
7 Partially correct 82 ms 14376 KB Output is partially correct
8 Partially correct 84 ms 14504 KB Output is partially correct
9 Partially correct 83 ms 9728 KB Output is partially correct
10 Partially correct 116 ms 14888 KB Output is partially correct
11 Partially correct 100 ms 14840 KB Output is partially correct
12 Partially correct 63 ms 10028 KB Output is partially correct
13 Partially correct 53 ms 9516 KB Output is partially correct
14 Partially correct 53 ms 9704 KB Output is partially correct
15 Partially correct 52 ms 9212 KB Output is partially correct
16 Partially correct 2 ms 600 KB Output is partially correct
17 Partially correct 51 ms 8268 KB Output is partially correct
18 Partially correct 53 ms 7972 KB Output is partially correct
19 Partially correct 49 ms 8496 KB Output is partially correct
20 Partially correct 65 ms 11044 KB Output is partially correct
21 Partially correct 86 ms 13064 KB Output is partially correct
22 Partially correct 60 ms 10292 KB Output is partially correct