답안 #926953

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
926953 2024-02-14T05:47:57 Z GrindMachine 자동 인형 (IOI18_doll) C++17
53 / 100
122 ms 16356 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*



*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

#include "doll.h"

void create_circuit(int m, std::vector<int> a) {
    // int N = A.size();
    // std::vector<int> C(M + 1);
    // C[0] = -1;
    // for (int i = 1; i <= M; ++i) {
    //     C[i] = 1;
    // }
    // std::vector<int> X(N), Y(N);
    // for (int k = 0; k < N; ++k) {
    //     X[k] = Y[k] = A[k];
    // }
    // answer(C, X, Y);

    int n = sz(a);
    vector<int> b(m+1);

    vector<int> pos[m+1];
    rep(i,n) pos[a[i]].pb(i);
    
    vector<int> root(m+1);
    vector<int> sx(1), sy(1), flipped;
    int switch_ptr = 1;

    rep1(i,m){
        if(sz(pos[i]) <= 1) conts;
        root[i] = -switch_ptr;
        sx.pb(0), sy.pb(0);
        switch_ptr++;
    }

    b[0] = a[0];
    rep(i,n){
        b[a[i]] = root[a[i]];
    }

    ll last_guy = inf2, last_type = inf2;
    vector<pll> pending;

    rep1(x,m){
        if(pos[x].empty()) conts;
        auto &p = pos[x];
        int c = sz(p);
        if(c == 1){
            ll i = p[0];
            if(i+1 < n){
                b[x] = a[i+1];
            }
            else{
                last_guy = x;
            }

            conts;
        }

        int siz = 1;
        while(siz < c) siz <<= 1;

        queue<pll> q;
        q.push({root[x],0});
        ll depth = __lg(siz)-1;

        while(!q.empty()){
            auto [u,d] = q.front();
            q.pop();
            if(d >= depth) conts;

            sx[-u] = -switch_ptr;
            sx.pb(0), sy.pb(0);
            switch_ptr++;

            sy[-u] = -switch_ptr;
            sx.pb(0), sy.pb(0);
            switch_ptr++;

            q.push({sx[-u],d+1});
            q.push({sy[-u],d+1});
        }

        while(sz(flipped) < sz(sx)){
            flipped.pb(0);
        }

        rep1(iter,siz){
            int ptr = root[x];
            rep1(d,depth){
                flipped[-ptr] ^= 1;
                if(flipped[-ptr]){
                    ptr = sx[-ptr];
                }
                else{
                    ptr = sy[-ptr];
                }
            }

            if(iter <= c){
                ll i = p[iter-1];
                if(i+1 < n){
                    ll nxt = a[i+1];
                    flipped[-ptr] ^= 1;
                    if(flipped[-ptr]){
                        sx[-ptr] = nxt;
                    }
                    else{
                        sy[-ptr] = nxt;
                    }
                }
                else{
                    last_guy = ptr;
                    flipped[-ptr] ^= 1;
                    if(flipped[-ptr]){
                        last_type = 0;
                    }
                    else{
                        last_type = 1;
                    }
                }
            }
            else{
                ll nxt = 0;
                if(iter < siz){
                    nxt = root[x];
                    flipped[-ptr] ^= 1;
                    if(flipped[-ptr]){
                        sx[-ptr] = nxt;
                    }
                    else{
                        sy[-ptr] = nxt;
                    }
                }
                else{
                    flipped[-ptr] ^= 1;
                    pending.pb({root[x],ptr});
                }
            }
        }

        // rep1(iter,siz){
        //     ll ptr = 1;
        //     while(ptr < siz/2){
        //         flipped[ptr] ^= 1;
        //         if(flipped[ptr]){
        //             ptr = ptr*2;
        //         }
        //         else{
        //             ptr = ptr*2+1;
        //         }
        //     }

        //     ll nxt = 0;

        //     if(iter < c){
        //         nxt = 1;
        //     }
        //     else if(iter < siz){
        //         nxt = -1;
        //     }
        //     else{
        //         nxt = 0;
        //     }

        //     flipped[ptr] ^= 1;
        //     if(flipped[ptr]){
        //         sx[ptr] = nxt;
        //     }
        //     else{
        //         sy[ptr] = nxt;
        //     }
        // }
    }

    assert(accumulate(all(flipped),0ll) == 0);

    pending.pb({0,0});

    if(last_type == 0){
        sx[-last_guy] = pending.front().ff;
    }
    else if(last_type == 1){
        sy[-last_guy] = pending.front().ff;
    }
    else{
        b[last_guy] = pending.front().ff;
    }

    rep(i,sz(pending)-1){
        sy[-pending[i].ss] = pending[i+1].ff;
    }

    sx.erase(sx.begin());
    sy.erase(sy.begin());
    // assert(sz(sx) <= 2*n);
    answer(b,sx,sy);

    // rep1(i,siz/2-1){
    //     sx[i] = -(i*2);
    //     sy[i] = -(i*2+1);
    // }

    // rep1(iter,siz){
    //     ll ptr = 1;
    //     while(ptr < siz/2){
    //         flipped[ptr] ^= 1;
    //         if(flipped[ptr]){
    //             ptr = ptr*2;
    //         }
    //         else{
    //             ptr = ptr*2+1;
    //         }
    //     }

    //     ll nxt = 0;

    //     if(iter < n){
    //         nxt = 1;
    //     }
    //     else if(iter < siz){
    //         nxt = -1;
    //     }
    //     else{
    //         nxt = 0;
    //     }

    //     flipped[ptr] ^= 1;
    //     if(flipped[ptr]){
    //         sx[ptr] = nxt;
    //     }
    //     else{
    //         sy[ptr] = nxt;
    //     }
    // }

    // sx.erase(sx.begin());
    // sy.erase(sy.begin());

    // answer(b,sx,sy);

    // vector<int> cnt(m+1);
    // rep(i,n) cnt[a[i]]++;
    // rep(i,m+1){
    //     if(cnt[i] == 1){
    //         a.pb(i);
    //     }
    // }

    // auto on = n;
    // n = sz(a);
    // b[0] = a[0];
    // vector<int> switch_id(m+1,-1); // trigger i is connected to which switch?
    // int ptr = 1;

    // rep(i,n){
    //     int x = a[i];
    //     if(switch_id[x] == -1){
    //         switch_id[x] = ptr;
    //         b[x] = -ptr;
    //         sx.pb(0);
    //         sy.pb(0);
    //         if(i+1 < on){
    //             sx[ptr] = a[i+1];
    //         }
    //         else if(i+1 < n){
    //             sx[ptr] = -switch_id[a[i+1]];
    //         }
    //         ptr++;
    //     }
    //     else{
    //         b[x] = -switch_id[x];
    //         if(i+1 < on){
    //             sy[switch_id[x]] = a[i+1];
    //         }
    //         else if(i+1 < n){
    //             sy[switch_id[x]] = -switch_id[a[i+1]];
    //         }
    //     }
    // }

    // sx.erase(sx.begin());
    // sy.erase(sy.begin());
    // debug(b);
    // debug(sx);
    // debug(sy);

    // answer(b,sx,sy);
}
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 600 KB Output is correct
2 Correct 22 ms 6852 KB Output is correct
3 Correct 16 ms 5468 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 9 ms 4188 KB Output is correct
6 Correct 27 ms 8024 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 600 KB Output is correct
2 Correct 22 ms 6852 KB Output is correct
3 Correct 16 ms 5468 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 9 ms 4188 KB Output is correct
6 Correct 27 ms 8024 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 36 ms 7900 KB Output is correct
9 Correct 39 ms 10244 KB Output is correct
10 Correct 56 ms 13344 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 600 KB Output is correct
2 Correct 22 ms 6852 KB Output is correct
3 Correct 16 ms 5468 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 9 ms 4188 KB Output is correct
6 Correct 27 ms 8024 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 36 ms 7900 KB Output is correct
9 Correct 39 ms 10244 KB Output is correct
10 Correct 56 ms 13344 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 70 ms 14532 KB Output is correct
15 Correct 37 ms 7368 KB Output is correct
16 Correct 54 ms 11064 KB Output is correct
17 Correct 0 ms 344 KB Output is correct
18 Correct 1 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 63 ms 13508 KB Output is correct
21 Correct 0 ms 344 KB Output is correct
22 Correct 0 ms 344 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Incorrect 0 ms 348 KB Output isn't correct
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Partially correct 1 ms 348 KB Output is partially correct
2 Correct 50 ms 6160 KB Output is correct
3 Partially correct 94 ms 10356 KB Output is partially correct
4 Partially correct 98 ms 10952 KB Output is partially correct
# 결과 실행 시간 메모리 Grader output
1 Partially correct 1 ms 348 KB Output is partially correct
2 Correct 50 ms 6160 KB Output is correct
3 Partially correct 94 ms 10356 KB Output is partially correct
4 Partially correct 98 ms 10952 KB Output is partially correct
5 Partially correct 122 ms 13992 KB Output is partially correct
6 Partially correct 85 ms 16140 KB Output is partially correct
7 Partially correct 93 ms 15856 KB Output is partially correct
8 Partially correct 84 ms 15928 KB Output is partially correct
9 Partially correct 85 ms 10784 KB Output is partially correct
10 Partially correct 115 ms 16356 KB Output is partially correct
11 Partially correct 101 ms 16056 KB Output is partially correct
12 Partially correct 63 ms 10804 KB Output is partially correct
13 Partially correct 54 ms 10544 KB Output is partially correct
14 Partially correct 53 ms 10484 KB Output is partially correct
15 Partially correct 52 ms 10224 KB Output is partially correct
16 Partially correct 2 ms 600 KB Output is partially correct
17 Partially correct 49 ms 9276 KB Output is partially correct
18 Partially correct 54 ms 9000 KB Output is partially correct
19 Partially correct 49 ms 9516 KB Output is partially correct
20 Partially correct 66 ms 12336 KB Output is partially correct
21 Partially correct 89 ms 14412 KB Output is partially correct
22 Partially correct 62 ms 11840 KB Output is partially correct