Submission #571354

# Submission time Handle Problem Language Result Execution time Memory
571354 2022-06-01T22:22:46 Z PedroBigMan Distributing Candies (IOI21_candies) C++17
8 / 100
3651 ms 79648 KB
/*
Author of all code: Pedro BIGMAN Dias
Last edit: 15/02/2021
*/
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
#pragma GCC optimize("Ofast")
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <string>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <queue>
#include <deque>
#include <list>
#include <iomanip>
#include <stdlib.h>
#include <time.h>
#include <cstring>
#include "candies.h"
using namespace std;
typedef long long int ll;
typedef unsigned long long int ull;
typedef long double ld;
#define REP(i,a,b) for(ll i=(ll) a; i<(ll) b; i++)
#define pb push_back
#define mp make_pair
#define pl pair<ll,ll>
#define ff first
#define ss second
#define whole(x) x.begin(),x.end()
#define DEBUG(i) cout<<"Pedro Is The Master "<<i<<endl
#define INF 500000000000LL
#define EPS 0.00000001
#define pi 3.14159
#define VV(vvvv,NNNN,xxxx); REP(i,0,NNNN) {vvvv.pb(xxxx);}
ll mod=1000000007LL;

template<class A=ll> 
void Out(vector<A> a) {REP(i,0,a.size()) {cout<<a[i]<<" ";} cout<<endl;}

template<class A=ll>
void In(vector<A> &a, ll N) {A cur; REP(i,0,N) {cin>>cur; a.pb(cur);}} 

class ST_max
{	
    public:
    ll N;
    
    class SV //seg value
    {
        public:
        ll a; ll ind;
        SV() {a=-INF;}
        SV(ll x) {a=x;}
        
        SV operator & (SV X) 
		{
			SV ANS(max(a,X.a)); 
			if(a>X.a) {ANS.ind=ind;} else {ANS.ind=X.ind;}
			return ANS;
		}
    };
      
    class LV //lazy value
    {
        public:
        ll a;
        LV() {a=0LL;}
        LV(ll x) {a=x;}
        
        LV operator & (LV X) {LV ANS(a+X.a); return ANS;}
    };
    
    SV upval(ll c) //how lazy values modify a seg value inside a node, c=current node
    {
        SV X(p[c].a+lazy[c].a); X.ind=p[c].ind;
        return X;
    }
    
    SV neuts; LV neutl;
    
    vector<SV> p;
    vector<LV> lazy;
    vector<pl> range;
    
    ST_max() {N=0LL;}
    ST_max(vector<ll> arr)
    {
        N = (ll) 1<<(ll) ceil(log2(arr.size()));
        REP(i,0,2*N) {range.pb(mp(0LL,0LL));}
        REP(i,0,N) {p.pb(neuts);}
        REP(i,0,arr.size()) {SV X(arr[i]); X.ind=i; p.pb(X); range[i+N]=mp(i,i);}
        REP(i,arr.size(),N) {p.pb(neuts); p.back().ind=i; range[i+N]=mp(i,i);}
        ll cur = N-1;
        while(cur>0)
        {
            p[cur]=p[2*cur]&p[2*cur+1];
            range[cur]=mp(range[2*cur].ff,range[2*cur+1].ss);
            cur--;
        }
        REP(i,0,2*N) {lazy.pb(neutl);}
    }
    
    void prop(ll c) //how lazy values propagate
    {
        lazy[2*c]=lazy[c]&lazy[2*c]; lazy[2*c+1]=lazy[c]&lazy[2*c+1];
        lazy[c]=neutl;
    }
    
    SV query(ll a,ll b, ll c=1LL) //range [a,b], current node. initially: query(a,b)
    {
        ll x=range[c].ff; ll y=range[c].ss;
        if(y<a || x>b) {return neuts;}
        if(x>=a && y<=b) {return upval(c);}
        prop(c);
		p[c]=upval(2*c)&upval(2*c+1);
        SV ans = query(a,b,2*c)&query(a,b,2*c+1);
        return ans;
    }
    
    void update(LV s, ll a, ll b, ll c=1LL) //update LV, range [a,b], current node, current range. initially: update(s,a,b)
    {
        ll x=range[c].ff; ll y=range[c].ss;
        if(y<a || x>b) {return ;}
        if(x>=a && y<=b) 
        {
            lazy[c]=s&lazy[c]; 
            return;
        }
		prop(c);
        update(s,a,b,2*c); update(s,a,b,2*c+1);
        p[c]=upval(2*c)&upval(2*c+1);
    }
};

class ST_min
{	
    public:
    ll N;
    
    class SV //seg value
    {
        public:
        ll a; ll ind;
        SV() {a=INF;}
        SV(ll x) {a=x;}
        
        SV operator & (SV X) 
		{
			SV ANS(min(a,X.a)); 
			if(a<X.a) {ANS.ind=ind;} else {ANS.ind=X.ind;}
			return ANS;
		}
    };
      
    class LV //lazy value
    {
        public:
        ll a;
        LV() {a=0LL;}
        LV(ll x) {a=x;}
        
        LV operator & (LV X) {LV ANS(a+X.a); return ANS;}
    };
    
    SV upval(ll c) //how lazy values modify a seg value inside a node, c=current node
    {
        SV X(p[c].a+lazy[c].a); X.ind=p[c].ind;
        return X;
    }
    
    SV neuts; LV neutl;
    
    vector<SV> p;
    vector<LV> lazy;
    vector<pl> range;
    
    ST_min() {N=0LL;}
    ST_min(vector<ll> arr)
    {
        N = (ll) 1<<(ll) ceil(log2(arr.size()));
        REP(i,0,2*N) {range.pb(mp(0LL,0LL));}
        REP(i,0,N) {p.pb(neuts);}
        REP(i,0,arr.size()) {SV X(arr[i]); X.ind=i; p.pb(X); range[i+N]=mp(i,i);}
        REP(i,arr.size(),N) {p.pb(neuts); p.back().ind=i; range[i+N]=mp(i,i);}
        ll cur = N-1;
        while(cur>0)
        {
            p[cur]=p[2*cur]&p[2*cur+1];
            range[cur]=mp(range[2*cur].ff,range[2*cur+1].ss);
            cur--;
        }
        REP(i,0,2*N) {lazy.pb(neutl);}
    }
    
    void prop(ll c) //how lazy values propagate
    {
        lazy[2*c]=lazy[c]&lazy[2*c]; lazy[2*c+1]=lazy[c]&lazy[2*c+1];
        lazy[c]=neutl;
    }
    
    SV query(ll a,ll b, ll c=1LL) //range [a,b], current node. initially: query(a,b)
    {
        ll x=range[c].ff; ll y=range[c].ss;
        if(y<a || x>b) {return neuts;}
        if(x>=a && y<=b) {return upval(c);}
        prop(c);
		p[c]=upval(2*c)&upval(2*c+1);
        SV ans = query(a,b,2*c)&query(a,b,2*c+1);
        return ans;
    }
    
    void update(LV s, ll a, ll b, ll c=1LL) //update LV, range [a,b], current node, current range. initially: update(s,a,b)
    {
        ll x=range[c].ff; ll y=range[c].ss;
        if(y<a || x>b) {return ;}
        if(x>=a && y<=b) 
        {
            lazy[c]=s&lazy[c]; 
            return;
        }
		prop(c);
        update(s,a,b,2*c); update(s,a,b,2*c+1);
        p[c]=upval(2*c)&upval(2*c+1);
    }
};

vector<int> distribute_candies(vector<int> cc, vector<int> lll, vector<int> rrr, vector<int> vv) 
{
   	ll N,Q; vector<ll> C,L,R,V;
	N=cc.size(); REP(i,0,N) {C.pb((ll) cc[i]);}
	Q=lll.size(); L.pb(0); R.pb(N-1); V.pb(-INF); REP(i,0,Q) {L.pb((ll) lll[i]); R.pb((ll) rrr[i]); V.pb((ll) vv[i]);} Q++;
	vector<ll> xx; VV(xx,Q,0LL); ST_min PS_min(xx); ST_max PS_max(xx);
	vector<vector<ll> > pos_beg,pos_end; VV(pos_beg,N+1,{}); VV(pos_end,N+1,{});
	REP(i,0,Q) {pos_beg[L[i]].pb(i); pos_end[R[i]+1].pb(i);}
	vector<int> ans;
	REP(i,0,N)
	{
		REP(j,0,pos_beg[i].size()) {ll ind = pos_beg[i][j]; PS_min.update(V[ind],ind,Q-1); PS_max.update(V[ind],ind,Q-1);}
		REP(j,0,pos_end[i].size()) {ll ind = pos_end[i][j]; PS_min.update(-V[ind],ind,Q-1); PS_max.update(-V[ind],ind,Q-1);}
		ll lo=0; ll hi=Q-1;
		ll mid, max_ps, min_ps;
		while(lo<hi)
		{
			mid = (lo+hi+1)/2;
			if(mid==0) {max_ps=max(0LL,PS_max.query(0,Q-1).a); min_ps=min(0LL,PS_min.query(0,Q-1).a);}
			else {max_ps=PS_max.query(mid-1,Q-1).a; min_ps=PS_min.query(mid-1,Q-1).a;}
			if(max_ps-min_ps>=C[i]) {lo=mid;} else {hi=mid-1;}
		}
		ll ind_max=0, ind_min=0;
		if(lo==0) {if(PS_max.query(0,Q-1).a>=0) {ind_max=PS_max.query(0,Q-1).ind;} if(PS_min.query(0,Q-1).a<=0) {ind_min=PS_min.query(0,Q-1).ind;}}
		else {ind_max=PS_max.query(lo-1,Q-1).ind; ind_min=PS_min.query(lo-1,Q-1).ind;}
		ll start; bool up;
		if(ind_max>ind_min) {start=ind_max+1; up=true;} else {start=ind_min+1; up=false;}
		ll acc = PS_max.query(Q-1,Q-1).a-PS_max.query(start-1,start-1).a;
		ll curans; if(up) {curans=C[i]+acc;} else {curans=acc;}
		ans.pb((int) curans);
		
	}
	return ans;
}

Compilation message

candies.cpp:5: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    5 | #pragma GCC optimization ("O3")
      | 
candies.cpp:6: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    6 | #pragma GCC optimization ("unroll-loops")
      |
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Incorrect 3 ms 724 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3305 ms 79648 KB Output is correct
2 Correct 3562 ms 78724 KB Output is correct
3 Correct 3651 ms 78516 KB Output is correct
# Verdict Execution time Memory Grader output
1 Incorrect 1 ms 340 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 296 KB Output is correct
3 Incorrect 268 ms 62732 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Incorrect 3 ms 724 KB Output isn't correct
4 Halted 0 ms 0 KB -