이 제출은 이전 버전의 oj.uz에서 채점하였습니다. 현재는 제출 당시와는 다른 서버에서 채점을 하기 때문에, 다시 제출하면 결과가 달라질 수도 있습니다.
#include <cassert>
#include <cstdio>
#include <vector>
using namespace std;
int const MAXN = 1000000;
int n;
bool quadruplication = 0;
int numcycles = 0;
int cycle_length; // If numcycles==1, here we store the length of the only
// cycle
int other_endpoint[4][MAXN]; // -1 if the node is not an endpoint, otherwise
// the other endpoint
vector<int> neighbours[MAXN];
int destroyed[4]; // The destroyed node of each graph (only if
// quadruplication==TRUE)
int degree[4][MAXN];
bool islinear[4]; // Whether each graph is linear or not
void Init(int k) {
n = k;
for (int i = 0; i < n; ++i) {
other_endpoint[0][i] = i;
}
}
void add_new_edge(int x, int y) {
// Adds an edge in case of quadruplication
for (int i = 0; i < 4; ++i) {
// Operating on graph i
if (!islinear[i]) continue;
if (x == destroyed[i] || y == destroyed[i]) continue;
degree[i][x]++;
degree[i][y]++;
assert(degree[i][x] <= 3 && degree[i][y] <= 3);
if (degree[i][x] == 3 || degree[i][y] == 3) {
islinear[i] = 0;
continue;
}
if (other_endpoint[i][x] == y) {
// Cycle!
islinear[i] = 0;
continue;
}
int a = other_endpoint[i][x];
int b = other_endpoint[i][y];
other_endpoint[i][x] = -1;
other_endpoint[i][y] = -1;
other_endpoint[i][a] = b;
other_endpoint[i][b] = a;
}
}
void quadruplicate(int x) {
quadruplication = 1;
destroyed[0] = x;
destroyed[1] = neighbours[x][0];
destroyed[2] = neighbours[x][1];
destroyed[3] = neighbours[x][2];
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < n; ++j) {
other_endpoint[i][j] = j;
degree[i][j] = 0;
}
}
for (int i = 0; i < 4; ++i) {
islinear[i] = 1;
}
for (int k = 0; k < n; ++k) {
for (vector<int>::iterator j = neighbours[k].begin();
j != neighbours[k].end(); ++j) {
if (k < (*j)) add_new_edge(k, (*j));
}
}
}
void Link(int xx, int yy) {
int x = xx;
int y = yy;
if (quadruplication == 0) {
neighbours[x].push_back(y);
neighbours[y].push_back(x);
degree[0][x]++;
degree[0][y]++;
// If a node has degree 3, only it or its neighbours can be critical. So
// we can keep track of each of the 4 graphs obtained by removing one of
// these 4 nodes.
if (degree[0][x] == 3) {
quadruplicate(x);
return;
}
if (degree[0][y] == 3) {
quadruplicate(y);
return;
}
// If their degree is < 3, then they were necessarily endpoints!
if (other_endpoint[0][x] != y) { // A longer path is formed
int a = other_endpoint[0][x];
int b = other_endpoint[0][y];
other_endpoint[0][x] = -1;
other_endpoint[0][y] = -1;
other_endpoint[0][a] = b;
other_endpoint[0][b] = a;
} else { // A cycle is formed
numcycles++;
if (numcycles == 1) {
int length = 1;
int previous_node = x;
int current_node = neighbours[x][0];
while (current_node != x) {
int possibility = neighbours[current_node][0];
if (possibility == previous_node)
possibility = neighbours[current_node][1];
previous_node = current_node;
current_node = possibility;
length++;
}
cycle_length = length;
}
}
}
else {
add_new_edge(x, y);
}
}
int CountCritical() {
if (quadruplication == 0) {
switch (numcycles) {
case 0:
return n;
case 1:
return cycle_length;
default:
return 0;
}
} else {
int answer = 0;
for (int i = 0; i < 4; ++i) {
if (islinear[i]) answer++;
}
return answer;
}
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |