#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
#include <utility>
using namespace std;
typedef pair<int,int> pi;
int n,m,c;
int x[200005], y[200005];
struct point{
int x,y,num;
};
bool cmp1(point a, point b){return a.x != b.x ? (a.x < b.x) : (a.y < b.y);}
bool cmp2(point a, point b){return a.y != b.y ? (a.y < b.y) : (a.x < b.x);}
struct edge_hori{
int sx, ex, y;
int s,e;
};
struct edge_vert{
int sy, ey, x;
int s,e;
};
struct kill_hori{
int y, sx, ex, dx;
};
struct kill_vert{
int x, sy, ey, dx;
};
bool cmp3(edge_hori a, edge_hori b){return a.y < b.y;}
bool cmp4(edge_vert a, edge_vert b){return a.x < b.x;}
bool cmp5(kill_hori a, kill_hori b){return a.y < b.y;}
bool cmp6(kill_vert a, kill_vert b){return a.x < b.x;}
long long tree[2100000];
int lazy[2100000];
void lazydown(int ps, int pe, int p){
lazy[2*p] += lazy[p];
lazy[2*p+1] += lazy[p];
int pm = (ps+pe)/2;
tree[2*p] += 1ll * lazy[p] * (pm - ps + 1);
tree[2*p+1] += 1ll * lazy[p] * (pe - pm);
lazy[p] = 0;
}
void add(int s, int e, int x, int ps, int pe, int p){
if(e < ps || pe < s) return;
if(s <= ps && pe <= e){
tree[p] += (pe - ps + 1) * x;
lazy[p] += x;
return;
}
lazydown(ps,pe,p);
int pm = (ps+pe)/2;
add(s,e,x,ps,pm,2*p);
add(s,e,x,pm+1,pe,2*p+1);
tree[p] = tree[2*p] + tree[2*p+1];
}
long long sum(int s, int e, int ps, int pe, int p){
if(e < ps || pe < s) return 0;
if(s <= ps && pe <= e) return tree[p];
lazydown(ps,pe,p);
int pm = (ps+pe)/2;
return sum(s,e,ps,pm,2*p) + sum(s,e,pm+1,pe,2*p+1);
}
vector<edge_hori> eh;
vector<edge_vert> ev;
vector<kill_hori> kh;
vector<kill_vert> kv;
void initialize(){
point hor[200005];
point vert[200005];
scanf("%d %d %d",&n,&m,&c);
for (int i=0; i<n; i++) {
scanf("%d %d",&x[i],&y[i]);
}
for (int i=0; i<n; i++) {
hor[i] = {x[i],y[i],i};
vert[i] = {x[i],y[i],i};
}
sort(hor,hor+n,cmp2);
sort(vert,vert+n,cmp1);
for (int i=0; i<n-1; i++) {
if(hor[i].y == hor[i+1].y){
eh.push_back({hor[i].x,hor[i+1].x,hor[i].y,hor[i].num,hor[i+1].num});
}
}
for (int i=0; i<n-1; i++) {
if(vert[i].x == vert[i+1].x){
ev.push_back({vert[i].y,vert[i+1].y,vert[i].x,vert[i].num,vert[i+1].num});
}
}
for (int i=0; i<m; i++) {
int p,q,r,s;
scanf("%d %d %d %d",&p,&q,&r,&s);
kh.push_back({q,p,r,1});
kh.push_back({s+1,p,r,-1});
kv.push_back({p,q,s,1});
kv.push_back({r+1,q,s,-1});
}
sort(eh.begin(),eh.end(),cmp3);
sort(ev.begin(),ev.end(),cmp4);
sort(kh.begin(),kh.end(),cmp5);
sort(kv.begin(),kv.end(),cmp6);
}
vector<int> px, py;
void coord_compression(){
for(auto i : eh){
px.push_back(i.sx);
px.push_back(i.ex);
py.push_back(i.y);
}
for(auto i : ev){
py.push_back(i.sy);
py.push_back(i.ey);
px.push_back(i.x);
}
for(auto i : kh){
py.push_back(i.y);
px.push_back(i.sx);
px.push_back(i.ex);
}
for(auto i : kv){
px.push_back(i.x);
py.push_back(i.sy);
py.push_back(i.ey);
}
sort(px.begin(),px.end());
sort(py.begin(),py.end());
px.resize(unique(px.begin(),px.end()) - px.begin());
py.resize(unique(py.begin(),py.end()) - py.begin());
for(auto &i : eh){
i.sx = (int)(lower_bound(px.begin(),px.end(),i.sx) - px.begin());
i.ex = (int)(lower_bound(px.begin(),px.end(),i.ex) - px.begin());
i.y = (int)(lower_bound(py.begin(),py.end(),i.y) - py.begin());
}
for(auto &i : ev){
i.sy = (int)(lower_bound(py.begin(),py.end(),i.sy) - py.begin());
i.ey = (int)(lower_bound(py.begin(),py.end(),i.ey) - py.begin());
i.x = (int)(lower_bound(px.begin(),px.end(),i.x) - px.begin());
}
for(auto &i : kh){
i.sx = (int)(lower_bound(px.begin(),px.end(),i.sx) - px.begin());
i.ex = (int)(lower_bound(px.begin(),px.end(),i.ex) - px.begin());
i.y = (int)(lower_bound(py.begin(),py.end(),i.y) - py.begin());
}
for(auto &i : kv){
i.sy = (int)(lower_bound(py.begin(),py.end(),i.sy) - py.begin());
i.ey = (int)(lower_bound(py.begin(),py.end(),i.ey) - py.begin());
i.x = (int)(lower_bound(px.begin(),px.end(),i.x) - px.begin());
}
}
struct edge{int s,e,x;};
bool cmp7(edge a, edge b){return a.x < b.x;}
vector<edge> ret_edge;
void graph_retrieval(){
memset(tree,0,sizeof(tree));
memset(lazy,0,sizeof(lazy));
int p1 = 0, p2 = 0;
while (p1 < eh.size() && p2 < kh.size()) {
if(eh[p1].y < kh[p2].y){
if(sum(eh[p1].sx,eh[p1].ex,0,(int)px.size()-1,1) == 0){
ret_edge.push_back({eh[p1].s,eh[p1].e,px[eh[p1].ex] - px[eh[p1].sx]});
}
p1++;
}
else{
add(kh[p2].sx,kh[p2].ex,kh[p2].dx,0,(int)px.size()-1,1);
p2++;
}
}
while (p1 < eh.size()) {
ret_edge.push_back({eh[p1].s,eh[p1].e,px[eh[p1].ex] - px[eh[p1].sx]});
p1++;
}
memset(tree,0,sizeof(tree));
memset(lazy,0,sizeof(lazy));
p1 = 0, p2 = 0;
while (p1 < ev.size() && p2 < kv.size()) {
if(ev[p1].x < kv[p2].x){
if(sum(ev[p1].sy,ev[p1].ey,0,(int)py.size()-1,1) == 0){
ret_edge.push_back({ev[p1].s,ev[p1].e,py[ev[p1].ey] - py[ev[p1].sy]});
}
p1++;
}
else{
add(kv[p2].sy,kv[p2].ey,kv[p2].dx,0,(int)py.size()-1,1);
p2++;
}
}
while (p1 < ev.size()) {
ret_edge.push_back({ev[p1].s,ev[p1].e,py[ev[p1].ey] - py[ev[p1].sy]});
p1++;
}
}
struct disj{
int pa[200005], r[200005];
void init(int n){
for(int i=0; i<=n; i++){
pa[i] = i;
}
}
int find(int x){
if(pa[x] == x) return x;
return pa[x] = find(pa[x]);
}
bool uni(int x, int y){
x = find(x);
y = find(y);
if(x == y) return 0;
if(r[x] < r[y]) pa[y] = x;
else pa[x] = y;
if(r[x] == r[y]) r[x]++;
return 1;
}
}disj;
vector<int> ret;
vector<long long> psum;
void tree_retrieval(){
disj.init(n);
sort(ret_edge.begin(),ret_edge.end(),cmp7);
for(edge i : ret_edge){
if(disj.uni(i.s,i.e)){
ret.push_back(i.x);
psum.push_back(i.x + (psum.empty() ? 0 : psum.back()));
}
}
}
inline long long get_sum(int x){
if(x == 0) return 0;
return psum[x-1];
}
void process_query(){
while (c--) {
int b,k;
scanf("%d %d",&b,&k);
k = min(k,n);
if(k + ret.size() < n) puts("-1");
else{
auto x = upper_bound(ret.begin(),ret.end(),b);
int cnt = (int)(x - ret.begin());
if(cnt + k < n){
printf("%lld\n",get_sum(n-k) + 1ll * b * k);
}
else{
printf("%lld\n",get_sum(cnt) + 1ll * (n - cnt) * b);
}
}
}
}
int main(){
initialize();
coord_compression();
graph_retrieval();
tree_retrieval();
process_query();
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
46 ms |
35412 KB |
Output is correct |
2 |
Correct |
437 ms |
47424 KB |
Output is correct |
3 |
Correct |
436 ms |
47424 KB |
Output is correct |
4 |
Correct |
532 ms |
64660 KB |
Output is correct |
5 |
Correct |
411 ms |
51684 KB |
Output is correct |
6 |
Correct |
481 ms |
47424 KB |
Output is correct |
7 |
Correct |
335 ms |
64664 KB |
Output is correct |
8 |
Correct |
310 ms |
50824 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2201 ms |
76940 KB |
Output is correct |
2 |
Correct |
2270 ms |
76936 KB |
Output is correct |
3 |
Correct |
2192 ms |
76936 KB |
Output is correct |
4 |
Correct |
2243 ms |
76936 KB |
Output is correct |
5 |
Correct |
1390 ms |
87180 KB |
Output is correct |
6 |
Correct |
416 ms |
51676 KB |
Output is correct |
7 |
Correct |
2203 ms |
76940 KB |
Output is correct |
8 |
Correct |
936 ms |
89232 KB |
Output is correct |
9 |
Correct |
951 ms |
89236 KB |
Output is correct |
10 |
Correct |
1010 ms |
82056 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
741 ms |
47424 KB |
Output is correct |
2 |
Correct |
728 ms |
51012 KB |
Output is correct |
3 |
Correct |
674 ms |
47424 KB |
Output is correct |
4 |
Correct |
738 ms |
64656 KB |
Output is correct |
5 |
Correct |
458 ms |
40512 KB |
Output is correct |
6 |
Correct |
666 ms |
49800 KB |
Output is correct |
7 |
Correct |
790 ms |
47424 KB |
Output is correct |
8 |
Correct |
747 ms |
47424 KB |
Output is correct |
9 |
Correct |
562 ms |
64664 KB |
Output is correct |
10 |
Correct |
608 ms |
50828 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2460 ms |
76936 KB |
Output is correct |
2 |
Correct |
1473 ms |
60552 KB |
Output is correct |
3 |
Correct |
2348 ms |
76940 KB |
Output is correct |
4 |
Correct |
655 ms |
46808 KB |
Output is correct |
5 |
Correct |
2364 ms |
76940 KB |
Output is correct |
6 |
Correct |
636 ms |
47320 KB |
Output is correct |
7 |
Correct |
1768 ms |
77612 KB |
Output is correct |
8 |
Correct |
2445 ms |
76936 KB |
Output is correct |
9 |
Correct |
1221 ms |
89232 KB |
Output is correct |
10 |
Correct |
1261 ms |
82052 KB |
Output is correct |
11 |
Correct |
664 ms |
52432 KB |
Output is correct |