답안 #999981

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
999981 2024-06-16T12:02:54 Z shmax 낙하산 고리들 (IOI12_rings) C++17
69 / 100
890 ms 89532 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>

#pragma GCC optimize("Ofast")
//#pragma GCC target("avx,avx2,fma")
#pragma GCC optimization ("unroll-loops")
//#pragma GCC target("avx,avx2,sse,sse2,sse3,sse4,popcnt")

using namespace std;
using namespace __gnu_pbds;
#define len(x) (int) x.size()


template<typename T>
using graph = vector<vector<T>>;


template<typename T>
using vec = vector<T>;


struct DSU {
public:
    DSU() : _n(0) {}

    explicit DSU(int n) : _n(n), parent_or_size(n, -1) {}

    int unite(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool one(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
                std::remove_if(result.begin(), result.end(),
                               [&](const std::vector<int> &v) { return v.empty(); }),
                result.end());
        return result;
    }

private:
    int _n;
    // root node: -1 * component size
    // otherwise: parent
    std::vector<int> parent_or_size;
};

int n;
graph<int> g;
DSU dsu;
bool is_zero = false;
vec<int> deg;
//set<pair<int, int>> deg_sorted;
int rootb3 = -1;
int cnt3 = 0;
vec<int> roots3;
vec<bool> goods3;
vec<int> neight3;
vec<int> goodneight3;
vec<DSU> dsues;
vec<DSU> neightdsues;
vec<bool> have3;
vec<bool> have;
DSU dsu2;
int cycle_sz;
int cnt_cyc = 0;
int mx1 = 0;
int mx2 = 0;
int mx1id = -1;

void Init(int32_t N_) {
    n = N_;
    have.resize(n, false);
    //    dsu = DSU(n);
    g.resize(n);
    deg.resize(n);
    have3.resize(n);
    for (int i = 0; i < n; i++) {
    }
    dsu2 = DSU(n);
}

pair<bool, DSU> create(int v) {
    DSU d = DSU(n);
    for (int i = 0; i < n; i++) {
        if (i == v) continue;
        for (auto &j: g[i]) {
            if (j == v) continue;
            if (i < j) continue;
            if (d.one(i, j)) {
                return {false, d};
            }
            d.unite(i, j);
        }
    }
    return {true, d};
}

bool add(DSU &d, int a, int b, int v) {
    if (a == v or b == v) return true;
    if (d.one(a, b)) return false;
    d.unite(a, b);
    return true;
}


void Link(int32_t a, int32_t b) {
    if (is_zero)return;
    if (rootb3 != -1) {
        if (!add(dsu, a, b, rootb3)) {
            is_zero = true;
            return;
        }
    } else {
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            goods3[i] = add(dsues[i], a, b, roots3[i]);
        }
        if (cnt3 < 3)
            for (int i = 0; i < len(neight3); i++) {
                if (!goodneight3[i]) continue;
                goodneight3[i] = add(neightdsues[i], a, b, neight3[i]);
            }
    }
    g[a].push_back(b);
    g[b].push_back(a);
    deg[a]++;
    deg[b]++;
    if (mx1 < deg[a]) {
        if (mx1id != a)
            mx2 = mx1;
        mx1 = deg[a];
        mx1id = a;
    } else if (mx2 < deg[a]) {
        mx2 = deg[a];
    }
    if (mx1 < deg[b]) {
        if (mx1id != b)
            mx2 = mx1;
        mx1 = deg[b];
        mx1id = b;
    } else if (mx2 < deg[b]) {
        mx2 = deg[b];
    }
    if (mx2 > 3) {
        is_zero = true;
        return;
    }
    if (rootb3 == -1 and mx1 > 3) {
        rootb3 = mx1id;
        auto [f, d] = create(rootb3);
        dsu = d;
        if (!f) {
            is_zero = true;
            return;
        }
        return;
    }
    if (rootb3 == -1) {
        if (deg[a] == 3) {
            {
                cnt3++;
                roots3.push_back(a);
                auto [f, d] = create(a);
                dsues.push_back(d);
                goods3.push_back(f);
            }
        }
        auto check = [&](int v) {
            int t = 0;
            for (auto u: g[v])
                t += (deg[u] == 3);
            return t + (deg[v] == 3) == cnt3;
        };
        if (deg[b] == 3) {
            {
                cnt3++;
                roots3.push_back(b);
                auto [f, d] = create(b);
                dsues.push_back(d);
                goods3.push_back(f);
            }
            if (cnt3 < 3) {
                for (auto x: g[b]) {
                    if (have3[x] or deg[x] == 3) continue;
                    if (!check(x)) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (deg[a] == 3) {
            if (cnt3 < 3) {
                for (auto x: g[a]) {
                    if (have3[x] or deg[x] == 3) continue;
                    if (!check(x)) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (cnt3 > 4) {
            is_zero = true;
            return;
        }

    }
    if (roots3.empty() and rootb3 == -1) {
        if (dsu2.one(a, b)) {
            cnt_cyc++;
            cycle_sz = dsu2.size(a);
        } else {
            dsu2.unite(a, b);
        }
        if (cnt_cyc > 1) {
            is_zero = true;
        }
    }
}


int32_t CountCritical() {
    if (is_zero) return 0;
    if (n == 1) return 1;
    if (rootb3 != -1) {
        return 1;
    }
    if (!roots3.empty()) {
        auto check = [&](int v) {
            int t = 0;
            for (auto u: g[v])
                t += (deg[u] == 3);
            return t + (deg[v] == 3) == cnt3;
        };
        vec<int> can;
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            if (have[roots3[i]]) continue;
            if (!check(roots3[i])) continue;
            have[roots3[i]] = true;
            can.push_back(roots3[i]);
        }
        if (cnt3 < 3)
            for (int i = 0; i < len(neight3); i++) {
                if (!goodneight3[i]) continue;
                if (have[neight3[i]]) continue;
                if (!check(neight3[i])) continue;
                have[roots3[i]] = true;
                can.push_back(neight3[i]);
            }
        for (auto &i: can) {
            have[i] = false;
        }
        return len(can);
    }
    if (cnt_cyc == 1)
        return cycle_sz;
    if (cnt_cyc == 0)
        return n;
}

Compilation message

rings.cpp:6: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    6 | #pragma GCC optimization ("unroll-loops")
      | 
rings.cpp: In function 'int32_t CountCritical()':
rings.cpp:301:1: warning: control reaches end of non-void function [-Wreturn-type]
  301 | }
      | ^
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 2 ms 604 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 764 KB Output is correct
6 Correct 2 ms 792 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 700 KB Output is correct
10 Correct 4 ms 868 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 162 ms 33104 KB Output is correct
2 Correct 496 ms 66264 KB Output is correct
3 Correct 184 ms 67600 KB Output is correct
4 Correct 552 ms 63020 KB Output is correct
5 Correct 547 ms 63060 KB Output is correct
6 Correct 536 ms 62032 KB Output is correct
7 Correct 161 ms 71624 KB Output is correct
8 Correct 807 ms 81908 KB Output is correct
9 Correct 890 ms 89532 KB Output is correct
10 Correct 344 ms 61368 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 2 ms 604 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 764 KB Output is correct
6 Correct 2 ms 792 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 700 KB Output is correct
10 Correct 4 ms 868 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 5 ms 1372 KB Output is correct
13 Correct 4 ms 1452 KB Output is correct
14 Correct 2 ms 1112 KB Output is correct
15 Correct 3 ms 1628 KB Output is correct
16 Correct 3 ms 1116 KB Output is correct
17 Correct 2 ms 1116 KB Output is correct
18 Correct 3 ms 1880 KB Output is correct
19 Correct 2 ms 1116 KB Output is correct
20 Correct 4 ms 1116 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 2 ms 604 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 764 KB Output is correct
6 Correct 2 ms 792 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 700 KB Output is correct
10 Correct 4 ms 868 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 5 ms 1372 KB Output is correct
13 Correct 4 ms 1452 KB Output is correct
14 Correct 2 ms 1112 KB Output is correct
15 Correct 3 ms 1628 KB Output is correct
16 Correct 3 ms 1116 KB Output is correct
17 Correct 2 ms 1116 KB Output is correct
18 Correct 3 ms 1880 KB Output is correct
19 Correct 2 ms 1116 KB Output is correct
20 Correct 4 ms 1116 KB Output is correct
21 Correct 12 ms 2908 KB Output is correct
22 Correct 19 ms 4464 KB Output is correct
23 Correct 29 ms 5512 KB Output is correct
24 Correct 25 ms 6712 KB Output is correct
25 Correct 12 ms 6484 KB Output is correct
26 Correct 23 ms 7280 KB Output is correct
27 Correct 24 ms 5468 KB Output is correct
28 Correct 17 ms 6820 KB Output is correct
29 Correct 18 ms 7748 KB Output is correct
30 Correct 32 ms 6480 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 2 ms 604 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 764 KB Output is correct
6 Correct 2 ms 792 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 700 KB Output is correct
10 Correct 4 ms 868 KB Output is correct
11 Correct 162 ms 33104 KB Output is correct
12 Correct 496 ms 66264 KB Output is correct
13 Correct 184 ms 67600 KB Output is correct
14 Correct 552 ms 63020 KB Output is correct
15 Correct 547 ms 63060 KB Output is correct
16 Correct 536 ms 62032 KB Output is correct
17 Correct 161 ms 71624 KB Output is correct
18 Correct 807 ms 81908 KB Output is correct
19 Correct 890 ms 89532 KB Output is correct
20 Correct 344 ms 61368 KB Output is correct
21 Correct 2 ms 860 KB Output is correct
22 Correct 5 ms 1372 KB Output is correct
23 Correct 4 ms 1452 KB Output is correct
24 Correct 2 ms 1112 KB Output is correct
25 Correct 3 ms 1628 KB Output is correct
26 Correct 3 ms 1116 KB Output is correct
27 Correct 2 ms 1116 KB Output is correct
28 Correct 3 ms 1880 KB Output is correct
29 Correct 2 ms 1116 KB Output is correct
30 Correct 4 ms 1116 KB Output is correct
31 Correct 12 ms 2908 KB Output is correct
32 Correct 19 ms 4464 KB Output is correct
33 Correct 29 ms 5512 KB Output is correct
34 Correct 25 ms 6712 KB Output is correct
35 Correct 12 ms 6484 KB Output is correct
36 Correct 23 ms 7280 KB Output is correct
37 Correct 24 ms 5468 KB Output is correct
38 Correct 17 ms 6820 KB Output is correct
39 Correct 18 ms 7748 KB Output is correct
40 Correct 32 ms 6480 KB Output is correct
41 Correct 140 ms 24656 KB Output is correct
42 Correct 312 ms 58896 KB Output is correct
43 Correct 145 ms 56592 KB Output is correct
44 Correct 164 ms 65812 KB Output is correct
45 Incorrect 266 ms 68620 KB Output isn't correct
46 Halted 0 ms 0 KB -