답안 #999979

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
999979 2024-06-16T12:00:26 Z shmax 낙하산 고리들 (IOI12_rings) C++17
37 / 100
965 ms 89696 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>

#pragma GCC optimize("Ofast")
//#pragma GCC target("avx,avx2,fma")
#pragma GCC optimization ("unroll-loops")
//#pragma GCC target("avx,avx2,sse,sse2,sse3,sse4,popcnt")

using namespace std;
using namespace __gnu_pbds;
#define len(x) (int) x.size()


template<typename T>
using graph = vector<vector<T>>;


template<typename T>
using vec = vector<T>;


struct DSU {
public:
    DSU() : _n(0) {}

    explicit DSU(int n) : _n(n), parent_or_size(n, -1) {}

    int unite(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool one(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
                std::remove_if(result.begin(), result.end(),
                               [&](const std::vector<int> &v) { return v.empty(); }),
                result.end());
        return result;
    }

private:
    int _n;
    // root node: -1 * component size
    // otherwise: parent
    std::vector<int> parent_or_size;
};

int n;
graph<int> g;
DSU dsu;
bool is_zero = false;
vec<int> deg;
//set<pair<int, int>> deg_sorted;
int rootb3 = -1;
int cnt3 = 0;
vec<int> roots3;
vec<bool> goods3;
vec<int> neight3;
vec<int> goodneight3;
vec<DSU> dsues;
vec<DSU> neightdsues;
vec<bool> have3;
vec<bool> have;
DSU dsu2;
int cycle_sz;
int cnt_cyc = 0;
int mx1 = 0;
int mx2 = 0;
int mx1id = -1;

void Init(int32_t N_) {
    n = N_;
    have.resize(n, false);
    //    dsu = DSU(n);
    g.resize(n);
    deg.resize(n);
    have3.resize(n);
    for (int i = 0; i < n; i++) {
    }
    dsu2 = DSU(n);
}

pair<bool, DSU> create(int v) {
    DSU d = DSU(n);
    for (int i = 0; i < n; i++) {
        if (i == v) continue;
        for (auto &j: g[i]) {
            if (j == v) continue;
            if (i < j) continue;
            if (d.one(i, j)) {
                return {false, d};
            }
            d.unite(i, j);
        }
    }
    return {true, d};
}

bool add(DSU &d, int a, int b, int v) {
    if (a == v or b == v) return true;
    if (d.one(a, b)) return false;
    d.unite(a, b);
    return true;
}


void Link(int32_t a, int32_t b) {
    if (is_zero)return;
    if (rootb3 != -1) {
        if (!add(dsu, a, b, rootb3)) {
            is_zero = true;
            return;
        }
    } else {
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            goods3[i] = add(dsues[i], a, b, roots3[i]);
        }
        if (cnt3 < 3)
            for (int i = 0; i < len(neight3); i++) {
                if (!goodneight3[i]) continue;
                goodneight3[i] = add(neightdsues[i], a, b, neight3[i]);
            }
    }
    g[a].push_back(b);
    g[b].push_back(a);
    deg[a]++;
    deg[b]++;
    if (mx1 < deg[a]) {
        if (mx1id != a)
            mx2 = mx1;
        mx1 = deg[a];
        mx1id = a;
    } else if (mx2 < deg[a]) {
        mx2 = deg[a];
    }
    if (mx1 < deg[b]) {
        if (mx1id != b)
            mx2 = mx1;
        mx1 = deg[b];
        mx1id = b;
    } else if (mx2 < deg[b]) {
        mx2 = deg[b];
    }
    if (mx2 > 3 - (rootb3 != -1)) {
        is_zero = true;
        return;
    }
    if (rootb3 == -1 and mx1 > 3) {
        rootb3 = mx1id;
        for (auto &i: g[rootb3]) {
            deg[i]--;
        }
        mx1 = 0;
        mx2 = 0;
        mx1id = -1;
        for (int i = 0; i < n; i++) {
            if (deg[i] > mx1) {
                mx1 = deg[i];
                mx1id = i;
            } else if (mx2 < deg[i]) {
                mx2 = deg[i];
            }
        }
        auto [f, d] = create(rootb3);
        dsu = d;
        if (!f) {
            is_zero = true;
            return;
        }
    }
    if (rootb3 == -1) {
        if (deg[a] == 3) {
            {
                cnt3++;
                roots3.push_back(a);
                auto [f, d] = create(a);
                dsues.push_back(d);
                goods3.push_back(f);
            }
        }
        auto check = [&](int v) {
            int t = 0;
            for (auto u: g[v])
                t += (deg[u] == 3);
            return t + (deg[v] == 3) == cnt3;
        };
        if (deg[b] == 3) {
            {
                cnt3++;
                roots3.push_back(b);
                auto [f, d] = create(b);
                dsues.push_back(d);
                goods3.push_back(f);
            }
            if (cnt3 < 3) {
                for (auto x: g[b]) {
                    if (have3[x] or deg[x] == 3) continue;
                    if (!check(x)) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (deg[a] == 3) {
            if (cnt3 < 3) {
                for (auto x: g[a]) {
                    if (have3[x] or deg[x] == 3) continue;
                    if (!check(x)) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (cnt3 > 4) {
            is_zero = true;
            return;
        }

    }
    if (roots3.empty() and rootb3 == -1) {
        if (dsu2.one(a, b)) {
            cnt_cyc++;
            cycle_sz = dsu2.size(a);
        } else {
            dsu2.unite(a, b);
        }
        if (cnt_cyc > 1) {
            is_zero = true;
        }
    }
}


int32_t CountCritical() {
    if (is_zero) return 0;
    if (n == 1) return 1;
    if (rootb3 != -1) {
        return 1;
    }
    if (!roots3.empty()) {
        auto check = [&](int v) {
            int t = 0;
            for (auto u: g[v])
                t += (deg[u] == 3);
            return t + (deg[v] == 3) == cnt3;
        };
        vec<int> can;
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            if (have[roots3[i]]) continue;
            if (!check(roots3[i])) continue;
            have[roots3[i]] = true;
            can.push_back(roots3[i]);
        }
        if (cnt3 < 3)
            for (int i = 0; i < len(neight3); i++) {
                if (!goodneight3[i]) continue;
                if (have[neight3[i]]) continue;
                if (!check(neight3[i])) continue;
                have[roots3[i]] = true;
                can.push_back(neight3[i]);
            }
        for (auto &i: can) {
            have[i] = false;
        }
        return len(can);
    }
    if (cnt_cyc == 1)
        return cycle_sz;
    if (cnt_cyc == 0)
        return n;
}

Compilation message

rings.cpp:6: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    6 | #pragma GCC optimization ("unroll-loops")
      | 
rings.cpp: In function 'int32_t CountCritical()':
rings.cpp:314:1: warning: control reaches end of non-void function [-Wreturn-type]
  314 | }
      | ^
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 3 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 172 ms 33100 KB Output is correct
2 Correct 470 ms 66268 KB Output is correct
3 Correct 159 ms 67652 KB Output is correct
4 Correct 491 ms 63112 KB Output is correct
5 Correct 542 ms 63100 KB Output is correct
6 Correct 479 ms 62036 KB Output is correct
7 Correct 156 ms 71628 KB Output is correct
8 Correct 760 ms 81788 KB Output is correct
9 Correct 965 ms 89696 KB Output is correct
10 Correct 350 ms 61268 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 3 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
11 Correct 3 ms 856 KB Output is correct
12 Correct 5 ms 1368 KB Output is correct
13 Correct 4 ms 1372 KB Output is correct
14 Incorrect 2 ms 860 KB Output isn't correct
15 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 3 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
11 Correct 3 ms 856 KB Output is correct
12 Correct 5 ms 1368 KB Output is correct
13 Correct 4 ms 1372 KB Output is correct
14 Incorrect 2 ms 860 KB Output isn't correct
15 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 3 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
11 Correct 172 ms 33100 KB Output is correct
12 Correct 470 ms 66268 KB Output is correct
13 Correct 159 ms 67652 KB Output is correct
14 Correct 491 ms 63112 KB Output is correct
15 Correct 542 ms 63100 KB Output is correct
16 Correct 479 ms 62036 KB Output is correct
17 Correct 156 ms 71628 KB Output is correct
18 Correct 760 ms 81788 KB Output is correct
19 Correct 965 ms 89696 KB Output is correct
20 Correct 350 ms 61268 KB Output is correct
21 Correct 3 ms 856 KB Output is correct
22 Correct 5 ms 1368 KB Output is correct
23 Correct 4 ms 1372 KB Output is correct
24 Incorrect 2 ms 860 KB Output isn't correct
25 Halted 0 ms 0 KB -