답안 #999975

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
999975 2024-06-16T11:51:37 Z shmax 낙하산 고리들 (IOI12_rings) C++17
69 / 100
854 ms 89672 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>

#pragma GCC optimize("Ofast")
//#pragma GCC target("avx,avx2,fma")
#pragma GCC optimization ("unroll-loops")
//#pragma GCC target("avx,avx2,sse,sse2,sse3,sse4,popcnt")

using namespace std;
using namespace __gnu_pbds;
#define len(x) (int) x.size()


template<typename T>
using graph = vector<vector<T>>;


template<typename T>
using vec = vector<T>;


struct DSU {
public:
    DSU() : _n(0) {}

    explicit DSU(int n) : _n(n), parent_or_size(n, -1) {}

    int unite(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool one(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
                std::remove_if(result.begin(), result.end(),
                               [&](const std::vector<int> &v) { return v.empty(); }),
                result.end());
        return result;
    }

private:
    int _n;
    // root node: -1 * component size
    // otherwise: parent
    std::vector<int> parent_or_size;
};

int n;
graph<int> g;
DSU dsu;
bool is_zero = false;
vec<int> deg;
//set<pair<int, int>> deg_sorted;
int rootb3 = -1;
int cnt3 = 0;
vec<int> roots3;
vec<bool> goods3;
vec<int> neight3;
vec<int> goodneight3;
vec<DSU> dsues;
vec<DSU> neightdsues;
vec<bool> have3;
vec<bool> have;
DSU dsu2;
int cycle_sz;
int cnt_cyc = 0;
int mx1 = 0;
int mx2 = 0;
int mx1id = -1;

void Init(int32_t N_) {
    n = N_;
    have.resize(n, false);
    //    dsu = DSU(n);
    g.resize(n);
    deg.resize(n);
    have3.resize(n);
    for (int i = 0; i < n; i++) {
    }
    dsu2 = DSU(n);
}

pair<bool, DSU> create(int v) {
    DSU d = DSU(n);
    for (int i = 0; i < n; i++) {
        if (i == v) continue;
        for (auto &j: g[i]) {
            if (j == v) continue;
            if (i < j) continue;
            if (d.one(i, j)) {
                return {false, d};
            }
            d.unite(i, j);
        }
    }
    return {true, d};
}

bool add(DSU &d, int a, int b, int v) {
    if (a == v or b == v) return true;
    if (d.one(a, b)) return false;
    d.unite(a, b);
    return true;
}


void Link(int32_t a, int32_t b) {
    if (is_zero)return;
    if (rootb3 != -1) {
        if (!add(dsu, a, b, rootb3)) {
            is_zero = true;
            return;
        }
    } else {
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            goods3[i] = add(dsues[i], a, b, roots3[i]);
        }
        if (cnt3 < 3)
            for (int i = 0; i < len(neight3); i++) {
                if (!goodneight3[i]) continue;
                goodneight3[i] = add(neightdsues[i], a, b, neight3[i]);
            }
    }
    g[a].push_back(b);
    g[b].push_back(a);
    deg[a]++;
    deg[b]++;
    if (mx1 < deg[a]) {
        if (mx1id != a)
            mx2 = mx1;
        mx1 = deg[a];
        mx1id = a;
    } else if (mx2 < deg[a]) {
        mx2 = deg[a];
    }
    if (mx1 < deg[b]) {
        if (mx1id != b)
            mx2 = mx1;
        mx1 = deg[b];
        mx1id = b;
    } else if (mx2 < deg[b]) {
        mx2 = deg[b];
    }
    if (mx2 > 3) {
        is_zero = true;
        return;
    }
    if (rootb3 == -1 and mx1 > 3) {
        rootb3 = mx1id;
        for (auto &i: g[rootb3]) {
            deg[i]--;
        }
        mx1 = 0;
        mx2 = 0;
        mx1id = -1;
        for (int i = 0; i < n; i++) {
            if (deg[i] > mx1) {
                mx1 = deg[i];
                mx1id = i;
            } else if (mx2 < deg[i]) {
                mx2 = deg[i];
            }
        }
        if (n != 1 and mx2 > 2)
            is_zero = true;
        auto [f, d] = create(rootb3);
        dsu = d;
        if (!f) {
            is_zero = true;
            return;
        }
    }
    if (rootb3 == -1) {
        if (deg[a] == 3) {
            {
                cnt3++;
                roots3.push_back(a);
                auto [f, d] = create(a);
                dsues.push_back(d);
                goods3.push_back(f);
            }
        }
        auto check = [&](int v) {
            int t = 0;
            for (auto u: g[v])
                t += (deg[u] == 3);
            return t + (deg[v] == 3) == cnt3;
        };
        if (deg[b] == 3) {
            {
                cnt3++;
                roots3.push_back(b);
                auto [f, d] = create(b);
                dsues.push_back(d);
                goods3.push_back(f);
            }
            if (cnt3 < 3) {
                for (auto x: g[b]) {
                    if (have3[x] or deg[x] == 3) continue;
                    if (!check(x)) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (deg[a] == 3) {
            if (cnt3 < 3) {
                for (auto x: g[a]) {
                    if (have3[x] or deg[x] == 3) continue;
                    if (!check(x)) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (cnt3 > 4) {
            is_zero = true;
            return;
        }

    }
    if (roots3.empty() and rootb3 == -1) {
        if (dsu2.one(a, b)) {
            cnt_cyc++;
            cycle_sz = dsu2.size(a);
        } else {
            dsu2.unite(a, b);
        }
        if (cnt_cyc > 1) {
            is_zero = true;
        }
    }
}


int32_t CountCritical() {
    if (is_zero) return 0;
    if (n == 1) return 1;
    if (rootb3 != -1) {
        return 1;
    }
    if (!roots3.empty()) {
        auto check = [&](int v) {
            int t = 0;
            for (auto u: g[v])
                t += (deg[u] == 3);
            return t + (deg[v] == 3) == cnt3;
        };
        vec<int> can;
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            if (have[roots3[i]]) continue;
            if (!check(roots3[i])) continue;
            have[roots3[i]] = true;
            can.push_back(roots3[i]);
        }
        if (cnt3 < 3)
            for (int i = 0; i < len(neight3); i++) {
                if (!goodneight3[i]) continue;
                if (have[neight3[i]]) continue;
                if (!check(neight3[i])) continue;
                have[roots3[i]] = true;
                can.push_back(neight3[i]);
            }
        for (auto &i: can) {
            have[i] = false;
        }
        return len(can);
    }
    if (cnt_cyc == 1)
        return cycle_sz;
    if (cnt_cyc == 0)
        return n;
}

Compilation message

rings.cpp:6: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    6 | #pragma GCC optimization ("unroll-loops")
      | 
rings.cpp: In function 'int32_t CountCritical()':
rings.cpp:316:1: warning: control reaches end of non-void function [-Wreturn-type]
  316 | }
      | ^
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 2 ms 760 KB Output is correct
3 Correct 1 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 198 ms 33032 KB Output is correct
2 Correct 465 ms 66268 KB Output is correct
3 Correct 152 ms 67524 KB Output is correct
4 Correct 476 ms 63156 KB Output is correct
5 Correct 534 ms 63064 KB Output is correct
6 Correct 491 ms 61860 KB Output is correct
7 Correct 170 ms 71620 KB Output is correct
8 Correct 806 ms 82112 KB Output is correct
9 Correct 854 ms 89672 KB Output is correct
10 Correct 318 ms 61272 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 2 ms 760 KB Output is correct
3 Correct 1 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
11 Correct 4 ms 1112 KB Output is correct
12 Correct 7 ms 1372 KB Output is correct
13 Correct 4 ms 1384 KB Output is correct
14 Correct 2 ms 1116 KB Output is correct
15 Correct 3 ms 1624 KB Output is correct
16 Correct 3 ms 1116 KB Output is correct
17 Correct 2 ms 1112 KB Output is correct
18 Correct 2 ms 1884 KB Output is correct
19 Correct 3 ms 1116 KB Output is correct
20 Correct 4 ms 1112 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 2 ms 760 KB Output is correct
3 Correct 1 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
11 Correct 4 ms 1112 KB Output is correct
12 Correct 7 ms 1372 KB Output is correct
13 Correct 4 ms 1384 KB Output is correct
14 Correct 2 ms 1116 KB Output is correct
15 Correct 3 ms 1624 KB Output is correct
16 Correct 3 ms 1116 KB Output is correct
17 Correct 2 ms 1112 KB Output is correct
18 Correct 2 ms 1884 KB Output is correct
19 Correct 3 ms 1116 KB Output is correct
20 Correct 4 ms 1112 KB Output is correct
21 Correct 10 ms 2904 KB Output is correct
22 Correct 18 ms 4444 KB Output is correct
23 Correct 22 ms 5460 KB Output is correct
24 Correct 22 ms 6736 KB Output is correct
25 Correct 14 ms 6484 KB Output is correct
26 Correct 31 ms 7444 KB Output is correct
27 Correct 24 ms 5468 KB Output is correct
28 Correct 22 ms 6820 KB Output is correct
29 Correct 16 ms 7752 KB Output is correct
30 Correct 28 ms 6484 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 2 ms 760 KB Output is correct
3 Correct 1 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
11 Correct 198 ms 33032 KB Output is correct
12 Correct 465 ms 66268 KB Output is correct
13 Correct 152 ms 67524 KB Output is correct
14 Correct 476 ms 63156 KB Output is correct
15 Correct 534 ms 63064 KB Output is correct
16 Correct 491 ms 61860 KB Output is correct
17 Correct 170 ms 71620 KB Output is correct
18 Correct 806 ms 82112 KB Output is correct
19 Correct 854 ms 89672 KB Output is correct
20 Correct 318 ms 61272 KB Output is correct
21 Correct 4 ms 1112 KB Output is correct
22 Correct 7 ms 1372 KB Output is correct
23 Correct 4 ms 1384 KB Output is correct
24 Correct 2 ms 1116 KB Output is correct
25 Correct 3 ms 1624 KB Output is correct
26 Correct 3 ms 1116 KB Output is correct
27 Correct 2 ms 1112 KB Output is correct
28 Correct 2 ms 1884 KB Output is correct
29 Correct 3 ms 1116 KB Output is correct
30 Correct 4 ms 1112 KB Output is correct
31 Correct 10 ms 2904 KB Output is correct
32 Correct 18 ms 4444 KB Output is correct
33 Correct 22 ms 5460 KB Output is correct
34 Correct 22 ms 6736 KB Output is correct
35 Correct 14 ms 6484 KB Output is correct
36 Correct 31 ms 7444 KB Output is correct
37 Correct 24 ms 5468 KB Output is correct
38 Correct 22 ms 6820 KB Output is correct
39 Correct 16 ms 7752 KB Output is correct
40 Correct 28 ms 6484 KB Output is correct
41 Correct 101 ms 28144 KB Output is correct
42 Correct 362 ms 65892 KB Output is correct
43 Correct 138 ms 59904 KB Output is correct
44 Correct 175 ms 78204 KB Output is correct
45 Incorrect 234 ms 77584 KB Output isn't correct
46 Halted 0 ms 0 KB -