답안 #999972

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
999972 2024-06-16T11:47:39 Z shmax 낙하산 고리들 (IOI12_rings) C++14
52 / 100
4000 ms 114372 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>

#pragma GCC optimize("Ofast")
//#pragma GCC target("avx,avx2,fma")
#pragma GCC optimization ("unroll-loops")
//#pragma GCC target("avx,avx2,sse,sse2,sse3,sse4,popcnt")

using namespace std;
using namespace __gnu_pbds;
#define len(x) (int) x.size()


template<typename T>
using graph = vector<vector<T>>;


template<typename T>
using vec = vector<T>;


struct DSU {
public:
    DSU() : _n(0) {}

    explicit DSU(int n) : _n(n), parent_or_size(n, -1) {}

    int unite(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool one(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
                std::remove_if(result.begin(), result.end(),
                               [&](const std::vector<int> &v) { return v.empty(); }),
                result.end());
        return result;
    }

private:
    int _n;
    // root node: -1 * component size
    // otherwise: parent
    std::vector<int> parent_or_size;
};

int n;
graph<int> g;
DSU dsu;
bool is_zero = false;
vec<int> deg;
set<pair<int, int>> deg_sorted;
int rootb3 = -1;
int cnt3 = 0;
vec<int> roots3;
vec<bool> goods3;
vec<int> neight3;
vec<int> goodneight3;
vec<DSU> dsues;
vec<DSU> neightdsues;
vec<bool> have3;
vec<bool> have;
DSU dsu2;
int cycle_sz;
int cnt_cyc = 0;
int mx1 = 0;
int mx2 = 0;
int mx1id = -1;

void Init(int32_t N_) {
    n = N_;
    have.resize(n, false);
//    dsu = DSU(n);
    g.resize(n);
    deg.resize(n);
    deg_sorted.clear();
    have3.resize(n);
    for (int i = 0; i < n; i++) {
        deg_sorted.insert({0, i});
    }
    dsu2 = DSU(n);
}

pair<bool, DSU> create(int v) {
    DSU d = DSU(n);
    for (int i = 0; i < n; i++) {
        if (i == v) continue;
        for (auto &j: g[i]) {
            if (j == v) continue;
            if (i < j) continue;
            if (d.one(i, j)) {
                return {false, d};
            }
            d.unite(i, j);
        }
    }
    return {true, d};
}

bool add(DSU &d, int a, int b, int v) {
    if (a == v or b == v) return true;
    if (d.one(a, b)) return false;
    d.unite(a, b);
    return true;
}


void Link(int32_t a, int32_t b) {
    if (is_zero)return;
    if (rootb3 != -1) {
        if (!add(dsu, a, b, rootb3)) {
            is_zero = true;
            return;
        }
    } else {
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            goods3[i] = add(dsues[i], a, b, roots3[i]);
        }
        if (cnt3 < 3)
            for (int i = 0; i < len(neight3); i++) {
                if (!goodneight3[i]) continue;
                goodneight3[i] = add(neightdsues[i], a, b, neight3[i]);
            }
    }
    deg_sorted.erase({deg[a], a});
    deg_sorted.erase({deg[b], b});
    g[a].push_back(b);
    g[b].push_back(a);
    deg[a]++;
    deg[b]++;
    if (mx1 < deg[a]) {
        if (mx1id != a)
            mx2 = mx1;
        mx1 = deg[a];
        mx1id = a;
    } else if (mx2 < deg[a]) {
        mx2 = deg[a];
    }
    if (mx1 < deg[b]) {
        if (mx1id != b)
            mx2 = mx1;
        mx1 = deg[b];
        mx1id = b;
    } else if (mx2 < deg[b]) {
        mx2 = deg[b];
    }
    deg_sorted.insert({deg[a], a});
    deg_sorted.insert({deg[b], b});
    if (mx2 > 3) {
        is_zero = true;
        return;
    }
    if (rootb3 == -1 and mx1 > 3) {
        rootb3 = mx1id;
        for (auto &i: g[rootb3]) {
            deg_sorted.erase({deg[i], i});
            deg[i]--;
            deg_sorted.insert({deg[i], i});
        }
        if (n != 1 and prev(prev(deg_sorted.end()))->first > 2)
            is_zero = true;
        auto [f, d] = create(rootb3);
        dsu = d;
        if (!f) {
            is_zero = true;
            return;
        }
    }
    if (rootb3 == -1) {
        if (deg[a] == 3) {
            {
                cnt3++;
                roots3.push_back(a);
                auto [f, d] = create(a);
                dsues.push_back(d);
                goods3.push_back(f);
            }
        }
        auto check = [&](int v) {
            int t = 0;
            for (auto u: g[v])
                t += (deg[u] == 3);
            return t + (deg[v] == 3) == cnt3;
        };
        if (deg[b] == 3) {
            {
                cnt3++;
                roots3.push_back(b);
                auto [f, d] = create(b);
                dsues.push_back(d);
                goods3.push_back(f);
            }
            if (cnt3 < 3) {
                for (auto x: g[b]) {
                    if (have3[x] or deg[x] == 3) continue;
                    if (!check(x)) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (deg[a] == 3) {
            if (cnt3 < 3) {
                for (auto x: g[a]) {
                    if (have3[x] or deg[x] == 3) continue;
                    if (!check(x)) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (cnt3 > 4) {
            is_zero = true;
            return;
        }

    }
    if (roots3.empty() and rootb3 == -1) {
        if (dsu2.one(a, b)) {
            cnt_cyc++;
            cycle_sz = dsu2.size(a);
        } else {
            dsu2.unite(a, b);
        }
        if (cnt_cyc > 1) {
            is_zero = true;
        }
    }
}


int32_t CountCritical() {
    if (is_zero) return 0;
    if (n == 1) return 1;
    if (rootb3 != -1) {
        return 1;
    }
    if (!roots3.empty()) {
        auto check = [&](int v) {
            int t = 0;
            for (auto u: g[v])
                t += (deg[u] == 3);
            return t + (deg[v] == 3) == cnt3;
        };
        vec<int> can;
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            if (have[roots3[i]]) continue;
            if (!check(roots3[i])) continue;
            have[roots3[i]] = true;
            can.push_back(roots3[i]);
        }
        if (cnt3 < 3)
            for (int i = 0; i < len(neight3); i++) {
                if (!goodneight3[i]) continue;
                if (have[neight3[i]]) continue;
                if (!check(neight3[i])) continue;
                have[roots3[i]] = true;
                can.push_back(neight3[i]);
            }
        for (auto &i: can) {
            have[i] = false;
        }
        return len(can);
    }
    if (cnt_cyc == 1)
        return cycle_sz;
    if (cnt_cyc == 0)
        return n;
}

Compilation message

rings.cpp:6: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    6 | #pragma GCC optimization ("unroll-loops")
      | 
rings.cpp: In function 'void Link(int32_t, int32_t)':
rings.cpp:199:14: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  199 |         auto [f, d] = create(rootb3);
      |              ^
rings.cpp:211:22: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  211 |                 auto [f, d] = create(a);
      |                      ^
rings.cpp:226:22: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  226 |                 auto [f, d] = create(b);
      |                      ^
rings.cpp:236:26: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  236 |                     auto [f, d] = create(x);
      |                          ^
rings.cpp:249:26: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  249 |                     auto [f, d] = create(x);
      |                          ^
rings.cpp: In function 'int32_t CountCritical()':
rings.cpp:313:1: warning: control reaches end of non-void function [-Wreturn-type]
  313 | }
      | ^
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 4 ms 860 KB Output is correct
3 Correct 6 ms 1116 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 604 KB Output is correct
6 Correct 5 ms 1036 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 3 ms 860 KB Output is correct
9 Correct 5 ms 1116 KB Output is correct
10 Correct 5 ms 1116 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1340 ms 57424 KB Output is correct
2 Correct 3297 ms 103760 KB Output is correct
3 Correct 378 ms 114372 KB Output is correct
4 Execution timed out 4070 ms 110284 KB Time limit exceeded
5 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 4 ms 860 KB Output is correct
3 Correct 6 ms 1116 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 604 KB Output is correct
6 Correct 5 ms 1036 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 3 ms 860 KB Output is correct
9 Correct 5 ms 1116 KB Output is correct
10 Correct 5 ms 1116 KB Output is correct
11 Correct 6 ms 1116 KB Output is correct
12 Correct 11 ms 1884 KB Output is correct
13 Correct 10 ms 1884 KB Output is correct
14 Correct 7 ms 1656 KB Output is correct
15 Correct 9 ms 2396 KB Output is correct
16 Correct 9 ms 1372 KB Output is correct
17 Correct 3 ms 1628 KB Output is correct
18 Correct 6 ms 2652 KB Output is correct
19 Correct 11 ms 1368 KB Output is correct
20 Correct 12 ms 1628 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 4 ms 860 KB Output is correct
3 Correct 6 ms 1116 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 604 KB Output is correct
6 Correct 5 ms 1036 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 3 ms 860 KB Output is correct
9 Correct 5 ms 1116 KB Output is correct
10 Correct 5 ms 1116 KB Output is correct
11 Correct 6 ms 1116 KB Output is correct
12 Correct 11 ms 1884 KB Output is correct
13 Correct 10 ms 1884 KB Output is correct
14 Correct 7 ms 1656 KB Output is correct
15 Correct 9 ms 2396 KB Output is correct
16 Correct 9 ms 1372 KB Output is correct
17 Correct 3 ms 1628 KB Output is correct
18 Correct 6 ms 2652 KB Output is correct
19 Correct 11 ms 1368 KB Output is correct
20 Correct 12 ms 1628 KB Output is correct
21 Correct 40 ms 5188 KB Output is correct
22 Correct 68 ms 8136 KB Output is correct
23 Correct 92 ms 10324 KB Output is correct
24 Correct 100 ms 10872 KB Output is correct
25 Correct 30 ms 11088 KB Output is correct
26 Correct 89 ms 11884 KB Output is correct
27 Correct 109 ms 9452 KB Output is correct
28 Correct 29 ms 10916 KB Output is correct
29 Correct 36 ms 12364 KB Output is correct
30 Correct 156 ms 11092 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 4 ms 860 KB Output is correct
3 Correct 6 ms 1116 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 604 KB Output is correct
6 Correct 5 ms 1036 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 3 ms 860 KB Output is correct
9 Correct 5 ms 1116 KB Output is correct
10 Correct 5 ms 1116 KB Output is correct
11 Correct 1340 ms 57424 KB Output is correct
12 Correct 3297 ms 103760 KB Output is correct
13 Correct 378 ms 114372 KB Output is correct
14 Execution timed out 4070 ms 110284 KB Time limit exceeded
15 Halted 0 ms 0 KB -