Submission #999958

# Submission time Handle Problem Language Result Execution time Memory
999958 2024-06-16T11:27:19 Z shmax Parachute rings (IOI12_rings) C++17
52 / 100
4000 ms 126144 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>

#pragma GCC optimize("Ofast")
//#pragma GCC target("avx,avx2,fma")
#pragma GCC optimization ("unroll-loops")
//#pragma GCC target("avx,avx2,sse,sse2,sse3,sse4,popcnt")

using namespace std;
using namespace __gnu_pbds;
#define len(x) (int) x.size()


template<typename T>
using graph = vector<vector<T>>;


template<typename T>
using vec = vector<T>;


struct DSU {
public:
    DSU() : _n(0) {}

    explicit DSU(int n) : _n(n), parent_or_size(n, -1) {}

    int unite(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool one(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
                std::remove_if(result.begin(), result.end(),
                               [&](const std::vector<int> &v) { return v.empty(); }),
                result.end());
        return result;
    }

private:
    int _n;
    // root node: -1 * component size
    // otherwise: parent
    std::vector<int> parent_or_size;
};

int n;
graph<int> g;
DSU dsu;
bool is_zero = false;
vec<int> deg;
set<pair<int, int>> deg_sorted;
int rootb3 = -1;
int cnt3 = 0;
vec<int> roots3;
vec<bool> goods3;
vec<int> neight3;
vec<int> goodneight3;
vec<DSU> dsues;
vec<DSU> neightdsues;
vec<bool> have3;

DSU dsu2;
int cycle_sz;
int cnt_cyc = 0;

void Init(int32_t N_) {
    n = N_;
//    dsu = DSU(n);
    g.resize(n);
    deg.resize(n);
    deg_sorted.clear();
    have3.resize(n);
    for (int i = 0; i < n; i++) {
        deg_sorted.insert({0, i});
    }
    dsu2 = DSU(n);
}

pair<bool, DSU> create(int v) {
    DSU d = DSU(n);
    for (int i = 0; i < n; i++) {
        if (i == v) continue;
        for (auto &j: g[i]) {
            if (j == v) continue;
            if (i < j) continue;
            if (d.one(i, j)) {
                return {false, d};
            }
            d.unite(i, j);
        }
    }
    return {true, d};
}

bool add(DSU &d, int a, int b, int v) {
    if (a == v or b == v) return true;
    if (d.one(a, b)) return false;
    d.unite(a, b);
    return true;
}

void Link(int32_t a, int32_t b) {
    if (is_zero)return;
    if (rootb3 != -1) {
        if (!add(dsu, a, b, rootb3)) {
            is_zero = true;
            return;
        }
    } else {
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            goods3[i] = add(dsues[i], a, b, roots3[i]);
        }
        if (cnt3 < 3)
            for (int i = 0; i < len(neight3); i++) {
                if (!goodneight3[i]) continue;
                goodneight3[i] = add(neightdsues[i], a, b, neight3[i]);
            }
    }
    deg_sorted.erase({deg[a], a});
    deg_sorted.erase({deg[b], b});
    g[a].push_back(b);
    g[b].push_back(a);
    deg[a]++;
    deg[b]++;
    deg_sorted.insert({deg[a], a});
    deg_sorted.insert({deg[b], b});
    if (n != 1 and deg_sorted.rbegin()->first > 3 and prev(prev(deg_sorted.end()))->first > 3) {
        is_zero = true;
    }
    if (rootb3 == -1 and deg_sorted.rbegin()->first > 3) {
        rootb3 = deg_sorted.rbegin()->second;
        for (auto &i: g[rootb3]) {
            deg_sorted.erase({deg[i], i});
            deg[i]--;
            deg_sorted.insert({deg[i], i});
        }
        if (n != 1 and prev(prev(deg_sorted.end()))->first > 2)
            is_zero = true;
        auto [f, d] = create(rootb3);
        dsu = d;
        if (!f) {
            is_zero = true;
            return;
        }
    }
    if (rootb3 == -1) {
        if (deg[a] == 3) {
            {
                cnt3++;
                roots3.push_back(a);
                auto [f, d] = create(a);
                dsues.push_back(d);
                goods3.push_back(f);
            }
            if (cnt3 < 3) {
                for (auto x: g[a]) {
                    if (have3[x] or deg[x] == 3) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (deg[b] == 3) {
            {
                cnt3++;
                roots3.push_back(b);
                auto [f, d] = create(b);
                dsues.push_back(d);
                goods3.push_back(f);
            }
            if (cnt3 < 3) {
                for (auto x: g[b]) {
                    if (have3[x] or deg[x] == 3) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (deg[a] == 3) {
            if (cnt3 < 3) {
                for (auto x: g[a]) {
                    if (have3[x] or deg[x] == 3) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (cnt3 > 4) {
            is_zero = true;
            return;
        }

    }
    if (roots3.empty() and rootb3 == -1) {
        if (dsu2.one(a, b)) {
            cnt_cyc++;
            cycle_sz = dsu2.size(a);
        } else {
            dsu2.unite(a, b);
        }
        if (cnt_cyc > 1) {
            is_zero = true;
        }
    }
}


int32_t CountCritical() {
    if (is_zero) return 0;
    if (n == 1) return 1;
    if (rootb3 != -1) {
        return 1;
    }
    if (!roots3.empty()) {
        auto check = [&](int v) {
            int t = 0;
            for (auto u: g[v])
                t += (deg[u] == 3);
            return t + (deg[v] == 3) == cnt3;
        };
        set<int> can;
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            if (!check(roots3[i])) continue;
            can.insert(roots3[i]);
        }
        if (cnt3 < 3)
            for (int i = 0; i < len(neight3); i++) {
                if (!goodneight3[i]) continue;
                if (!check(neight3[i])) continue;
                can.insert(neight3[i]);
            }
        return len(can);
    }
    if (cnt_cyc == 1)
        return cycle_sz;
    if (cnt_cyc == 0)
        return n;
}

Compilation message

rings.cpp:6: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    6 | #pragma GCC optimization ("unroll-loops")
      | 
rings.cpp: In function 'int32_t CountCritical()':
rings.cpp:286:1: warning: control reaches end of non-void function [-Wreturn-type]
  286 | }
      | ^
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 4 ms 860 KB Output is correct
3 Correct 5 ms 1112 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 772 KB Output is correct
6 Correct 5 ms 860 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 3 ms 828 KB Output is correct
9 Correct 5 ms 1116 KB Output is correct
10 Correct 5 ms 1116 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1292 ms 57520 KB Output is correct
2 Correct 3257 ms 103732 KB Output is correct
3 Correct 401 ms 126144 KB Output is correct
4 Execution timed out 4067 ms 110008 KB Time limit exceeded
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 4 ms 860 KB Output is correct
3 Correct 5 ms 1112 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 772 KB Output is correct
6 Correct 5 ms 860 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 3 ms 828 KB Output is correct
9 Correct 5 ms 1116 KB Output is correct
10 Correct 5 ms 1116 KB Output is correct
11 Correct 5 ms 1112 KB Output is correct
12 Correct 11 ms 1884 KB Output is correct
13 Correct 11 ms 1884 KB Output is correct
14 Correct 7 ms 1628 KB Output is correct
15 Correct 9 ms 2396 KB Output is correct
16 Correct 9 ms 1372 KB Output is correct
17 Correct 3 ms 1628 KB Output is correct
18 Correct 10 ms 2908 KB Output is correct
19 Correct 11 ms 1368 KB Output is correct
20 Correct 13 ms 1644 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 4 ms 860 KB Output is correct
3 Correct 5 ms 1112 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 772 KB Output is correct
6 Correct 5 ms 860 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 3 ms 828 KB Output is correct
9 Correct 5 ms 1116 KB Output is correct
10 Correct 5 ms 1116 KB Output is correct
11 Correct 5 ms 1112 KB Output is correct
12 Correct 11 ms 1884 KB Output is correct
13 Correct 11 ms 1884 KB Output is correct
14 Correct 7 ms 1628 KB Output is correct
15 Correct 9 ms 2396 KB Output is correct
16 Correct 9 ms 1372 KB Output is correct
17 Correct 3 ms 1628 KB Output is correct
18 Correct 10 ms 2908 KB Output is correct
19 Correct 11 ms 1368 KB Output is correct
20 Correct 13 ms 1644 KB Output is correct
21 Correct 41 ms 5200 KB Output is correct
22 Correct 63 ms 8272 KB Output is correct
23 Correct 97 ms 10320 KB Output is correct
24 Correct 95 ms 11072 KB Output is correct
25 Correct 30 ms 11084 KB Output is correct
26 Correct 104 ms 11852 KB Output is correct
27 Correct 102 ms 9296 KB Output is correct
28 Correct 35 ms 11968 KB Output is correct
29 Correct 34 ms 13644 KB Output is correct
30 Correct 161 ms 11092 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 4 ms 860 KB Output is correct
3 Correct 5 ms 1112 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 772 KB Output is correct
6 Correct 5 ms 860 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 3 ms 828 KB Output is correct
9 Correct 5 ms 1116 KB Output is correct
10 Correct 5 ms 1116 KB Output is correct
11 Correct 1292 ms 57520 KB Output is correct
12 Correct 3257 ms 103732 KB Output is correct
13 Correct 401 ms 126144 KB Output is correct
14 Execution timed out 4067 ms 110008 KB Time limit exceeded
15 Halted 0 ms 0 KB -