Submission #999947

# Submission time Handle Problem Language Result Execution time Memory
999947 2024-06-16T10:53:49 Z shmax Parachute rings (IOI12_rings) C++17
38 / 100
4000 ms 212312 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>

//#pragma GCC optimize("O3")
//#pragma GCC target("avx,avx2,fma")
//#pragma GCC optimization ("unroll-loops")
//#pragma GCC target("avx,avx2,sse,sse2,sse3,sse4,popcnt")

using namespace std;
using namespace __gnu_pbds;
#define int long long
#define float long double
#define elif else if
#define endl "\n"
#define mod 1000000007
#define pi acos(-1)
#define eps 0.000000001
#define inf 1000'000'000'000'000'000LL
#define FIXED(a) cout << fixed << setprecision(a)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define time_init auto start = std::chrono::high_resolution_clock::now()
#define time_report                                       \
    auto end = std::chrono::high_resolution_clock::now(); \
    std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << " ms" << endl
#define debug(x) \
    { cerr << #x << " = " << x << endl; }
#define len(x) (int) x.size()
#define sqr(x) ((x) * (x))
#define cube(x) ((x) * (x) * (x))
#define bit(x, i) (((x) >> (i)) & 1)
#define set_bit(x, i) ((x) | (1LL << (i)))
#define clear_bit(x, i) ((x) & (~(1LL << (i))))
#define toggle_bit(x, i) ((x) ^ (1LL << (i)))
#define low_bit(x) ((x) & (-(x)))
#define count_bit(x) __builtin_popcountll(x)
#define srt(x) sort(all(x))
#define rsrt(x) sort(rall(x))
#define mp make_pair
#define maxel(x) (*max_element(all(x)))
#define minel(x) (*min_element(all(x)))
#define maxelpos(x) (max_element(all(x)) - x.begin())
#define minelpos(x) (min_element(all(x)) - x.begin())
#define sum(x) (accumulate(all(x), 0LL))
#define product(x) (accumulate(all(x), 1LL, multiplies<int>()))
#define gcd __gcd
#define lcm(a, b) ((a) / gcd(a, b) * (b))
#define rev(x) (reverse(all(x)))
#define shift_left(x, k) (rotate(x.begin(), x.begin() + k, x.end()))
#define shift_right(x, k) (rotate(x.rbegin(), x.rbegin() + k, x.rend()))
#define is_sorted(x) (is_sorted_until(all(x)) == x.end())
#define is_even(x) (((x) &1) == 0)
#define is_odd(x) (((x) &1) == 1)
#define pow2(x) (1LL << (x))

struct custom_hash {
    static uint64_t splitmix64(uint64_t x) {
        // http://xorshift.di.unimi.it/splitmix64.c
        x += 0x9e3779b97f4a7c15;
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x ^ (x >> 31);
    }

    size_t operator()(uint64_t x) const {
        static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
        return splitmix64(x + FIXED_RANDOM);
    }
};

template<typename T>
using min_heap = priority_queue<T, vector<T>, greater<T>>;
template<typename T>
using max_heap = priority_queue<T, vector<T>, less<T>>;
template<typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T>
using ordered_multiset = tree<T, null_type, less_equal<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T>
using matrix = vector<vector<T>>;
template<typename T>
using graph = vector<vector<T>>;
using hashmap = gp_hash_table<int, int, custom_hash>;

template<typename T>
vector<T> vect(int n, T val) {
    return vector<T>(n, val);
}

template<typename T>
vector<vector<T>> vect(int n, int m, T val) {
    return vector<vector<T>>(n, vector<T>(m, val));
}

template<typename T>
vector<vector<vector<T>>> vect(int n, int m, int k, T val) {
    return vector<vector<vector<T>>>(n, vector<vector<T>>(m, vector<T>(k, val)));
}

template<typename T>
vector<vector<vector<vector<T>>>> vect(int n, int m, int k, int l, T val) {
    return vector<vector<vector<vector<T>>>>(n, vector<vector<vector<T>>>(m, vector<vector<T>>(k, vector<T>(l, val))));
}

template<typename T>
matrix<T> new_matrix(int n, int m, T val) {
    return matrix<T>(n, vector<T>(m, val));
}

template<typename T>
graph<T> new_graph(int n) {
    return graph<T>(n);
}

template<class T, class S>
inline bool chmax(T &a, const S &b) {
    return (a < b ? a = b, 1 : 0);
}

template<class T, class S>
inline bool chmin(T &a, const S &b) {
    return (a > b ? a = b, 1 : 0);
}

using i8 = int8_t;
using i16 = int16_t;
using i32 = int32_t;
using i64 = int64_t;
using i128 = __int128_t;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using u128 = __uint128_t;

template<typename T>
using vec = vector<T>;

using pII = pair<int, int>;
template<typename T>
using enumerated = pair<T, int>;

struct DSU {
public:
    DSU() : _n(0) {}

    explicit DSU(int n) : _n(n), parent_or_size(n, -1) {}

    int unite(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool one(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
                std::remove_if(result.begin(), result.end(),
                               [&](const std::vector<int> &v) { return v.empty(); }),
                result.end());
        return result;
    }

private:
    int _n;
    // root node: -1 * component size
    // otherwise: parent
    std::vector<int> parent_or_size;
};

int n;
graph<int> g;
DSU dsu;
bool is_zero = false;
vec<int> deg;
set<pair<int, int>> deg_sorted;
int rootb3 = -1;
int cnt3 = 0;
vec<int> roots3;
vec<bool> goods3;
vec<DSU> dsues;
vec<bool> have3;
void Init(i32 N_) {
    n = N_;
//    dsu = DSU(n);
    g.resize(n);
    deg.resize(n);
    deg_sorted.clear();
    have3.resize(n);
    for (int i = 0; i < n; i++) {
        deg_sorted.insert({0, i});
    }
}

pair<bool, DSU> create(int v) {
    DSU d = DSU(n);
    for (int i = 0; i < n; i++) {
        if (i == v) continue;
        for (auto &j: g[i]) {
            if (j == v) continue;
            if (i < j) continue;
            if (d.one(i, j)) {
                return {false, d};
            }
            d.unite(i, j);
        }
    }
    return {true, d};
}

bool add(DSU &d, int a, int b, int v) {
    if (a == v or b == v) return true;
    if (d.one(a, b)) return false;
    d.unite(a, b);
    return true;
}

void Link(i32 a, i32 b) {
    if (is_zero)return;
    if (rootb3 != -1) {
        if (!add(dsu, a, b, rootb3)) {
            is_zero = true;
            return;
        }
    } else {
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            goods3[i] = add(dsues[i], a, b, roots3[i]);
        }
    }
    deg_sorted.erase({deg[a], a});
    deg_sorted.erase({deg[b], b});
    g[a].push_back(b);
    g[b].push_back(a);
    deg[a]++;
    deg[b]++;
    deg_sorted.insert({deg[a], a});
    deg_sorted.insert({deg[b], b});
    if (n != 1 and deg_sorted.rbegin()->first > 3 and prev(prev(deg_sorted.end()))->first > 3) {
        is_zero = true;
    }
    if (rootb3 == -1 and deg_sorted.rbegin()->first > 3) {
        rootb3 = deg_sorted.rbegin()->second;
        for (auto &i: g[rootb3]) {
            deg_sorted.erase({deg[i], i});
            deg[i]--;
            deg_sorted.insert({deg[i], i});
        }
        if (n != 1 and prev(prev(deg_sorted.end()))->first > 2)
            is_zero = true;
        auto [f, d] = create(rootb3);
        dsu = d;
        if (!f) {
            is_zero = true;
            return;
        }
    }
    if (rootb3 == -1) {
        if (deg[a] == 3) {
            {
                have3[a] = true;
                cnt3++;
                roots3.push_back(a);
                auto [f, d] = create(a);
                dsues.push_back(d);
                goods3.push_back(f);
            }
            for (auto x: g[a]) {
                if(have3[x]) continue;
                have3[x] = true;
                roots3.push_back(x);
                auto [f, d] = create(x);
                dsues.push_back(d);
                goods3.push_back(f);
            }
        }
        if (deg[b] == 3) {
            {
                have3[b] = true;
                cnt3++;
                roots3.push_back(b);
                auto [f, d] = create(b);
                dsues.push_back(d);
                goods3.push_back(f);
            }
            for (auto x: g[b]) {
                if(have3[x]) continue;
                have3[x] = true;
                roots3.push_back(x);
                auto [f, d] = create(x);
                dsues.push_back(d);
                goods3.push_back(f);
            }
        }

        if (cnt3 > 4) {
            is_zero = true;
            return;
        }

    }
}


i32 CountCritical() {
    if (is_zero) return 0;
    if (n == 1) return 1;
    if (rootb3 != -1) {
        return 1;
    }
    if (!roots3.empty()) {
        auto check = [&](int v) {
            int t = 0;
            for (auto u: g[v])
                t += (deg[u] == 3);
            return t + (deg[v] == 3) == cnt3;
        };
        set<int> can;
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            if (!check(roots3[i])) continue;
            can.insert(roots3[i]);
        }

        return len(can);
    }
    int ans = 0;
    DSU d1(n);
    int cnt_cyc = 0;
    int tf = 0;
    for (int i = 0; i < n; i++) {
        for (auto &j: g[i]) {
            if (i > j) continue;
            if (d1.one(i, j))cnt_cyc++, tf = d1.size(i);
            d1.unite(i, j);
        }
    }
    if (cnt_cyc > 1) {
        return 0;
    } elif (cnt_cyc == 1) {
        ans = tf;
    } else ans = n;
    return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 5 ms 1112 KB Output is correct
3 Correct 5 ms 1116 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 860 KB Output is correct
6 Correct 6 ms 1116 KB Output is correct
7 Correct 2 ms 1628 KB Output is correct
8 Correct 4 ms 860 KB Output is correct
9 Correct 7 ms 1372 KB Output is correct
10 Correct 6 ms 1296 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1370 ms 69692 KB Output is correct
2 Correct 3299 ms 133568 KB Output is correct
3 Correct 476 ms 212312 KB Output is correct
4 Execution timed out 4013 ms 125008 KB Time limit exceeded
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 5 ms 1112 KB Output is correct
3 Correct 5 ms 1116 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 860 KB Output is correct
6 Correct 6 ms 1116 KB Output is correct
7 Correct 2 ms 1628 KB Output is correct
8 Correct 4 ms 860 KB Output is correct
9 Correct 7 ms 1372 KB Output is correct
10 Correct 6 ms 1296 KB Output is correct
11 Correct 7 ms 1628 KB Output is correct
12 Correct 35 ms 3472 KB Output is correct
13 Correct 18 ms 2704 KB Output is correct
14 Correct 9 ms 2012 KB Output is correct
15 Correct 9 ms 3608 KB Output is correct
16 Correct 23 ms 1616 KB Output is correct
17 Correct 7 ms 3420 KB Output is correct
18 Correct 8 ms 5820 KB Output is correct
19 Correct 25 ms 1628 KB Output is correct
20 Correct 19 ms 2396 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 5 ms 1112 KB Output is correct
3 Correct 5 ms 1116 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 860 KB Output is correct
6 Correct 6 ms 1116 KB Output is correct
7 Correct 2 ms 1628 KB Output is correct
8 Correct 4 ms 860 KB Output is correct
9 Correct 7 ms 1372 KB Output is correct
10 Correct 6 ms 1296 KB Output is correct
11 Correct 7 ms 1628 KB Output is correct
12 Correct 35 ms 3472 KB Output is correct
13 Correct 18 ms 2704 KB Output is correct
14 Correct 9 ms 2012 KB Output is correct
15 Correct 9 ms 3608 KB Output is correct
16 Correct 23 ms 1616 KB Output is correct
17 Correct 7 ms 3420 KB Output is correct
18 Correct 8 ms 5820 KB Output is correct
19 Correct 25 ms 1628 KB Output is correct
20 Correct 19 ms 2396 KB Output is correct
21 Execution timed out 4062 ms 6128 KB Time limit exceeded
22 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 5 ms 1112 KB Output is correct
3 Correct 5 ms 1116 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 860 KB Output is correct
6 Correct 6 ms 1116 KB Output is correct
7 Correct 2 ms 1628 KB Output is correct
8 Correct 4 ms 860 KB Output is correct
9 Correct 7 ms 1372 KB Output is correct
10 Correct 6 ms 1296 KB Output is correct
11 Correct 1370 ms 69692 KB Output is correct
12 Correct 3299 ms 133568 KB Output is correct
13 Correct 476 ms 212312 KB Output is correct
14 Execution timed out 4013 ms 125008 KB Time limit exceeded
15 Halted 0 ms 0 KB -