답안 #999935

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
999935 2024-06-16T10:31:59 Z shmax 낙하산 고리들 (IOI12_rings) C++17
55 / 100
4000 ms 71444 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>

//#pragma GCC optimize("O3")
//#pragma GCC target("avx,avx2,fma")
//#pragma GCC optimization ("unroll-loops")
//#pragma GCC target("avx,avx2,sse,sse2,sse3,sse4,popcnt")

using namespace std;
using namespace __gnu_pbds;
#define int long long
#define float long double
#define elif else if
#define endl "\n"
#define mod 1000000007
#define pi acos(-1)
#define eps 0.000000001
#define inf 1000'000'000'000'000'000LL
#define FIXED(a) cout << fixed << setprecision(a)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define time_init auto start = std::chrono::high_resolution_clock::now()
#define time_report                                       \
        auto end = std::chrono::high_resolution_clock::now(); \
        std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << " ms" << endl
#define debug(x) \
        { cerr << #x << " = " << x << endl; }
#define len(x) (int) x.size()
#define sqr(x) ((x) * (x))
#define cube(x) ((x) * (x) * (x))
#define bit(x, i) (((x) >> (i)) & 1)
#define set_bit(x, i) ((x) | (1LL << (i)))
#define clear_bit(x, i) ((x) & (~(1LL << (i))))
#define toggle_bit(x, i) ((x) ^ (1LL << (i)))
#define low_bit(x) ((x) & (-(x)))
#define count_bit(x) __builtin_popcountll(x)
#define srt(x) sort(all(x))
#define rsrt(x) sort(rall(x))
#define mp make_pair
#define maxel(x) (*max_element(all(x)))
#define minel(x) (*min_element(all(x)))
#define maxelpos(x) (max_element(all(x)) - x.begin())
#define minelpos(x) (min_element(all(x)) - x.begin())
#define sum(x) (accumulate(all(x), 0LL))
#define product(x) (accumulate(all(x), 1LL, multiplies<int>()))
#define gcd __gcd
#define lcm(a, b) ((a) / gcd(a, b) * (b))
#define rev(x) (reverse(all(x)))
#define shift_left(x, k) (rotate(x.begin(), x.begin() + k, x.end()))
#define shift_right(x, k) (rotate(x.rbegin(), x.rbegin() + k, x.rend()))
#define is_sorted(x) (is_sorted_until(all(x)) == x.end())
#define is_even(x) (((x) &1) == 0)
#define is_odd(x) (((x) &1) == 1)
#define pow2(x) (1LL << (x))

struct custom_hash {
    static uint64_t splitmix64(uint64_t x) {
        // http://xorshift.di.unimi.it/splitmix64.c
        x += 0x9e3779b97f4a7c15;
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x ^ (x >> 31);
    }

    size_t operator()(uint64_t x) const {
        static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
        return splitmix64(x + FIXED_RANDOM);
    }
};

template<typename T>
using min_heap = priority_queue<T, vector<T>, greater<T>>;
template<typename T>
using max_heap = priority_queue<T, vector<T>, less<T>>;
template<typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T>
using ordered_multiset = tree<T, null_type, less_equal<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T>
using matrix = vector<vector<T>>;
template<typename T>
using graph = vector<vector<T>>;
using hashmap = gp_hash_table<int, int, custom_hash>;

template<typename T>
vector<T> vect(int n, T val) {
    return vector<T>(n, val);
}

template<typename T>
vector<vector<T>> vect(int n, int m, T val) {
    return vector<vector<T>>(n, vector<T>(m, val));
}

template<typename T>
vector<vector<vector<T>>> vect(int n, int m, int k, T val) {
    return vector<vector<vector<T>>>(n, vector<vector<T>>(m, vector<T>(k, val)));
}

template<typename T>
vector<vector<vector<vector<T>>>> vect(int n, int m, int k, int l, T val) {
    return vector<vector<vector<vector<T>>>>(n, vector<vector<vector<T>>>(m, vector<vector<T>>(k, vector<T>(l, val))));
}

template<typename T>
matrix<T> new_matrix(int n, int m, T val) {
    return matrix<T>(n, vector<T>(m, val));
}

template<typename T>
graph<T> new_graph(int n) {
    return graph<T>(n);
}

template<class T, class S>
inline bool chmax(T &a, const S &b) {
    return (a < b ? a = b, 1 : 0);
}

template<class T, class S>
inline bool chmin(T &a, const S &b) {
    return (a > b ? a = b, 1 : 0);
}

using i8 = int8_t;
using i16 = int16_t;
using i32 = int32_t;
using i64 = int64_t;
using i128 = __int128_t;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using u128 = __uint128_t;

template<typename T>
using vec = vector<T>;

using pII = pair<int, int>;
template<typename T>
using enumerated = pair<T, int>;
int n;
graph<int> g;

void Init(i32 N_) {
    n = N_;
    g.resize(n);
}

void Link(i32 a, i32 b) {
    g[a].push_back(b);
    g[b].push_back(a);
}

struct DSU {
public:
    DSU() : _n(0) {}

    explicit DSU(int n) : _n(n), parent_or_size(n, -1) {}

    int unite(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool one(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
                std::remove_if(result.begin(), result.end(),
                               [&](const std::vector<int> &v) { return v.empty(); }),
                result.end());
        return result;
    }

private:
    int _n;
    // root node: -1 * component size
    // otherwise: parent
    std::vector<int> parent_or_size;
};

bool is_zero = false;

i32 CountCritical() {
    
    if(is_zero) return 0;
    int ans = 0;
    vec<int> deg(n);
    for (int i = 0; i < n; i++) {
        deg[i] = len(g[i]);
    }

    int mx = maxel(deg);
    if (mx > 3) {
        int cnt = 0;
        for (int i = 0; i < n; i++) {
            cnt += deg[i] == mx;
        }
        if (cnt > 1) return 0;
        for (int i = 0; i < n; i++) {
            if (deg[i] == mx) {
                for (auto &j: g[i]) {
                    deg[j]--;
                }
                deg[i] = 0;
                bool good = maxel(deg) < 3;
                DSU dsu(n);
                for (int j = 0; j < n; j++) {
                    if (i == j) continue;
                    for (auto &k: g[j]) {
                        if (i == k) continue;
                        if (j > k) continue;
                        good = good and !dsu.one(j, k);
                        dsu.unite(j, k);
                    }
                }
                ans += good;
            }
        }
        return ans;
    }
    int cnt3 = 0;
    for (int i = 0; i < n; i++) {
        cnt3 += deg[i] == 3;
    }
    if (cnt3 > 4) {

        is_zero = true;
        return 0;
    }
    if (cnt3 > 0) {
        for (int i = 0; i < n; i++) {
            int k3 = cnt3;
            for (auto &j: g[i]) {
                k3 -= deg[j] == 3;
                deg[j]--;
            }
            if (deg[i] == 3)k3--;
            if (k3 != 0) {
                for (auto &j: g[i]) {
                    deg[j]++;
                }
                continue;
            }

            bool good = true;
            //        ans += maxel(cd) < 3;
            DSU dsu(n);
            for (int j = 0; j < n; j++) {
                if (i == j) continue;
                for (auto &k: g[j]) {
                    if (i == k) continue;
                    if (j > k) continue;
                    good = good and !dsu.one(j, k);
                    dsu.unite(j, k);
                }
            }

            ans += good;
            for (auto &j: g[i]) {
                deg[j]++;
            }
        }
    } else {
        DSU dsu(n);
        int cnt_cyc = 0;
        int tf = 0;
        for (int i = 0; i < n; i++) {
            for (auto &j: g[i]) {
                if (i > j) continue;
                if (dsu.one(i, j))cnt_cyc++, tf = dsu.size(i);
                dsu.unite(i, j);
            }
        }
        if (cnt_cyc > 1) {
            return 0;
        } elif (cnt_cyc == 1) {
            ans = tf;
        } else ans = n;
    }
    return ans;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 2 ms 604 KB Output is correct
6 Correct 2 ms 604 KB Output is correct
7 Correct 0 ms 604 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 2 ms 604 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 163 ms 37064 KB Output is correct
2 Correct 367 ms 56660 KB Output is correct
3 Correct 373 ms 64848 KB Output is correct
4 Correct 505 ms 70736 KB Output is correct
5 Correct 483 ms 70736 KB Output is correct
6 Correct 463 ms 69364 KB Output is correct
7 Correct 416 ms 71444 KB Output is correct
8 Correct 559 ms 66248 KB Output is correct
9 Correct 566 ms 70996 KB Output is correct
10 Correct 345 ms 68948 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 2 ms 604 KB Output is correct
6 Correct 2 ms 604 KB Output is correct
7 Correct 0 ms 604 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 2 ms 604 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 10 ms 600 KB Output is correct
12 Correct 23 ms 1188 KB Output is correct
13 Correct 37 ms 1128 KB Output is correct
14 Correct 14 ms 1072 KB Output is correct
15 Correct 28 ms 1492 KB Output is correct
16 Correct 20 ms 1168 KB Output is correct
17 Correct 3 ms 996 KB Output is correct
18 Correct 4 ms 1264 KB Output is correct
19 Correct 27 ms 1224 KB Output is correct
20 Correct 26 ms 1224 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 2 ms 604 KB Output is correct
6 Correct 2 ms 604 KB Output is correct
7 Correct 0 ms 604 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 2 ms 604 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 10 ms 600 KB Output is correct
12 Correct 23 ms 1188 KB Output is correct
13 Correct 37 ms 1128 KB Output is correct
14 Correct 14 ms 1072 KB Output is correct
15 Correct 28 ms 1492 KB Output is correct
16 Correct 20 ms 1168 KB Output is correct
17 Correct 3 ms 996 KB Output is correct
18 Correct 4 ms 1264 KB Output is correct
19 Correct 27 ms 1224 KB Output is correct
20 Correct 26 ms 1224 KB Output is correct
21 Execution timed out 4054 ms 3184 KB Time limit exceeded
22 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 2 ms 604 KB Output is correct
6 Correct 2 ms 604 KB Output is correct
7 Correct 0 ms 604 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 2 ms 604 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 163 ms 37064 KB Output is correct
12 Correct 367 ms 56660 KB Output is correct
13 Correct 373 ms 64848 KB Output is correct
14 Correct 505 ms 70736 KB Output is correct
15 Correct 483 ms 70736 KB Output is correct
16 Correct 463 ms 69364 KB Output is correct
17 Correct 416 ms 71444 KB Output is correct
18 Correct 559 ms 66248 KB Output is correct
19 Correct 566 ms 70996 KB Output is correct
20 Correct 345 ms 68948 KB Output is correct
21 Correct 10 ms 600 KB Output is correct
22 Correct 23 ms 1188 KB Output is correct
23 Correct 37 ms 1128 KB Output is correct
24 Correct 14 ms 1072 KB Output is correct
25 Correct 28 ms 1492 KB Output is correct
26 Correct 20 ms 1168 KB Output is correct
27 Correct 3 ms 996 KB Output is correct
28 Correct 4 ms 1264 KB Output is correct
29 Correct 27 ms 1224 KB Output is correct
30 Correct 26 ms 1224 KB Output is correct
31 Execution timed out 4054 ms 3184 KB Time limit exceeded
32 Halted 0 ms 0 KB -