/*
Soln:
Find position of 1 using binary search query(i,N) == N-1
After that solve left and right parts individually
For left part for example,
A[i-1] can be easily found by 1 query
For A[j], j <= i-2, you may require 1 or 2 queries
Check abs(A[j+1]-A[j]).
You get 2 possible values of A[j]
If one of the values has already been put somewhere then we don't need any more queries
Otherwise query(j,j+2) for finding exact value.
This is <= 2n+log(n) queries for sure
but not sure why it takes <= 2n queries(or maybe it doesn't and test cases are weak)
Logically thinking it is intuitive it should take much less steps but Idk formal proof.
*/
#include "xylophone.h"
#include<bits/stdc++.h>
using namespace std;
#define REP(i,n) for(int i = 0; i < n; i ++)
static int A[5005];
int pos[5005];
void solve(int n) {
if(n==1){
answer(1,1);
}
else if(n==2){
answer(1,1);
answer(1,2);
}
else{
int diff2[n+1];
int diff1[n+1];
for(int i=3;i<=n;i++){
diff1[i]=query(i-1,i);
diff2[i]=query(i-2,i);
}
int a[n+1];
int dist=query(1,2);
for(int m=-1;m<=1;m+=2){
a[1]=1e9;
a[2]=a[1]+m*dist;
int Min=min(a[1],a[2]);
for(int i=3;i<=n;i++){
if(diff2[i]==diff1[i]+abs(a[i-2]-a[i-1])){
if(a[i-2]>a[i-1]){
a[i]=a[i-1]-diff1[i];
}
else{
a[i]=a[i-1]+diff1[i];
}
}
else{
if(a[i-2]>a[i-1]){
a[i]=a[i-1]+diff1[i];
}
else{
a[i]=a[i-1]-diff1[i];
}
}
Min=min(a[1],a[i]);
}
Min--;
bool mark[n+1]={false};
bool flag=true;
for(int i=1;i<=n;i++){
a[i]-=Min;
if(a[i]>n||a[i]<=1||mark[a[i]]){
flag=false;
break;
}
mark[a[i]]=true;
}
if(flag){
for(int i=1;i<=n;i++){
answer(i,a[i]);
}
}
}
}
}
Compilation message
xylophone.cpp:25:12: warning: 'A' defined but not used [-Wunused-variable]
25 | static int A[5005];
| ^
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
0 ms |
344 KB |
Wrong Answer [5] |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
0 ms |
344 KB |
Wrong Answer [5] |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
0 ms |
344 KB |
Wrong Answer [5] |
2 |
Halted |
0 ms |
0 KB |
- |