Submission #992512

# Submission time Handle Problem Language Result Execution time Memory
992512 2024-06-04T14:20:44 Z PedroBigMan Islands (IOI08_islands) C++14
80 / 100
592 ms 131072 KB
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
#pragma GCC optimize("Ofast")
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <string>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <queue>
#include <deque>
#include <list>
#include <iomanip>
#include <stdlib.h>
#include <time.h>
#include <cstring>
using namespace std;
typedef long long int ll;
typedef unsigned long long int ull;
typedef long double ld;
#define REP(i,a,b) for(ll i=(ll) a; i<(ll) b; i++)
#define pb push_back
#define mp make_pair
#define pl pair<ll,ll>
#define ff first
#define ss second
#define whole(x) x.begin(),x.end()
#define DEBUG(i) cout<<"Pedro "<<i<<endl
#define INF 1000000000000000000LL
#define EPS ((ld)0.00000000001)
#define pi ((ld)3.141592653589793)
#define VV(vvvv,NNNN,xxxx); REP(iiiii,0,NNNN) {vvvv.pb(xxxx);}
ll mod=1000000007;

template<class A=ll> 
void Out(vector<A> a) {REP(i,0,a.size()) {cout<<a[i]<<" ";} cout<<endl;}

template<class A=ll>
void In(vector<A> &a, ll N) {A cur; REP(i,0,N) {cin>>cur; a.pb(cur);}} 

vector<ll> f, w; vector<bool> visited;
vector<vector<ll> > adj; ll nei;
ll bestpath;

vector<ll> Floyd(ll s) //Floyd's Algorithm, O(N) time, O(1) memory, return <element of cycle,length od cycle>
{
    ll a=f[s]; ll b=f[f[s]];
    while(a!=b) {a=f[a]; b=f[f[b]];}
    vector<ll> ans; ans.pb(a); b=f[a];
    while(b!=a) {ans.pb(b); b=f[b];}
    return ans;
}

ll DFS(ll s)
{
    visited[s]=true; ll ans = 0; ll thisval;
    REP(i,0,adj[s].size())
    {
        nei = adj[s][i];
        if(visited[nei]) {continue;}
        thisval = w[nei]+DFS(nei);
        bestpath = max(bestpath,ans+thisval);
        ans = max(ans,thisval);
    }
    return ans;
}

vector<ll> Rolling_Max(vector<ll> a, ll M) //ans[i]=j means aj<ai, j<i and j is the largest that fullfills these conditions. If no j exists then a[i]=-1. 
{
	deque<ll> chain; vector<ll> ans;
    REP(i,0,a.size())
    {
        while(chain.size()>0 && a[i]>=a[chain[chain.size()-1]]) {chain.pop_back();}
        chain.pb(i);
        if(chain.front()==i-M) {chain.pop_front();}
        ans.pb(a[chain.front()]);
    }	
    return ans;
} 


int main()
{
    ios_base::sync_with_stdio(0);
    cin.tie(0); cout.tie(0);
	cout.precision(20);
	ll N; cin>>N; f = vector<ll>(N,-1); w = vector<ll>(N,-1); visited = vector<bool>(N,false); adj=vector<vector<ll> >(N,vector<ll>());
    REP(i,0,N) {cin>>f[i]>>w[i]; f[i]--; adj[i].pb(f[i]); adj[f[i]].pb(i);}
    ll ans = 0LL; ll node; ll C;
    REP(s,0,N)
    {
        if(visited[s]) {continue;}
        ll bestval = 0; ll thisval;
        vector<ll> cycle = Floyd(s); C = cycle.size();
        REP(i,0,cycle.size()) {node=cycle[i]; visited[node]=true;}
        vector<ll> val(C,0);
        REP(i,0,cycle.size()) 
        {
            bestpath = 0;
            val[i]=DFS(cycle[i]);
            bestval = max(bestval,bestpath);
        }
        vector<ll> ps; ll cursum=0;
        REP(i,0,2*C) {node = cycle[i%C]; ps.pb(cursum+val[i%C]); cursum+=w[node];}
        vector<ll> rm = Rolling_Max(ps,C-1);
        REP(i,0,C)
        {
            thisval=rm[i+C-1] -(ps[i]-val[i])+val[i];
            bestval = max(thisval,bestval);
        }
        ans+=bestval;
    }
    cout<<ans<<endl;
    return 0;
}

Compilation message

islands.cpp:1: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    1 | #pragma GCC optimization ("O3")
      | 
islands.cpp:2: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    2 | #pragma GCC optimization ("unroll-loops")
      |
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 560 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 604 KB Output is correct
2 Correct 1 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 1852 KB Output is correct
2 Correct 11 ms 4312 KB Output is correct
3 Correct 7 ms 1880 KB Output is correct
4 Correct 3 ms 1116 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 5972 KB Output is correct
2 Correct 24 ms 9472 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 48 ms 17228 KB Output is correct
2 Correct 58 ms 24184 KB Output is correct
3 Correct 67 ms 34112 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 85 ms 31480 KB Output is correct
2 Correct 115 ms 56384 KB Output is correct
3 Correct 144 ms 63240 KB Output is correct
4 Correct 154 ms 82756 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 183 ms 78768 KB Output is correct
2 Correct 427 ms 115004 KB Output is correct
3 Correct 189 ms 62424 KB Output is correct
4 Correct 233 ms 106644 KB Output is correct
5 Correct 239 ms 106036 KB Output is correct
6 Correct 592 ms 73372 KB Output is correct
7 Runtime error 231 ms 131072 KB Execution killed with signal 9
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 237 ms 117840 KB Output is correct
2 Correct 233 ms 94384 KB Output is correct
3 Runtime error 236 ms 131072 KB Execution killed with signal 9
4 Halted 0 ms 0 KB -