Submission #992475

# Submission time Handle Problem Language Result Execution time Memory
992475 2024-06-04T13:57:35 Z PedroBigMan Islands (IOI08_islands) C++14
70 / 100
358 ms 131072 KB
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
#pragma GCC optimize("Ofast")
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <string>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <queue>
#include <deque>
#include <list>
#include <iomanip>
#include <stdlib.h>
#include <time.h>
#include <cstring>
using namespace std;
typedef long long int ll;
typedef unsigned long long int ull;
typedef long double ld;
#define REP(i,a,b) for(ll i=(ll) a; i<(ll) b; i++)
#define pb push_back
#define mp make_pair
#define pl pair<ll,ll>
#define ff first
#define ss second
#define whole(x) x.begin(),x.end()
#define DEBUG(i) cout<<"Pedro "<<i<<endl
#define INF 1000000000000000000LL
#define EPS ((ld)0.00000000001)
#define pi ((ld)3.141592653589793)
#define VV(vvvv,NNNN,xxxx); REP(iiiii,0,NNNN) {vvvv.pb(xxxx);}
ll mod=1000000007;

template<class A=ll> 
void Out(vector<A> a) {REP(i,0,a.size()) {cout<<a[i]<<" ";} cout<<endl;}

template<class A=ll>
void In(vector<A> &a, ll N) {A cur; REP(i,0,N) {cin>>cur; a.pb(cur);}} 

vector<ll> f, w; vector<bool> visited;
vector<vector<ll> > adj; ll nei;
ll bestpath;

vector<ll> Floyd(ll s) //Floyd's Algorithm, O(N) time, O(1) memory, return <element of cycle,length od cycle>
{
    ll a=f[s]; ll b=f[f[s]];
    while(a!=b) {a=f[a]; b=f[f[b]];}
    vector<ll> ans; ans.pb(a); b=f[a];
    while(b!=a) {ans.pb(b); b=f[b];}
    return ans;
}

ll DFS(ll s)
{
    visited[s]=true; ll ans = 0; ll thisval;
    REP(i,0,adj[s].size())
    {
        nei = adj[s][i];
        if(visited[nei]) {continue;}
        thisval = w[nei]+DFS(nei);
        bestpath = max(bestpath,ans+thisval);
        ans = max(ans,thisval);
    }
    return ans;
}

template<class T=ll>
class SparseTable //Range Minimum Queries
{
    public:
    ll N; 
    vector<T> a;
    vector<vector<T> > v;
    
    SparseTable() {N=0LL;}
    SparseTable(vector<T> b)
    {
        a=b; N=a.size();
        ll lo=(ll) floor((ld) log2(N)) +1LL;
        vector<T> xx; 
        REP(i,0,lo) {xx.pb(0);} REP(i,0,N) {v.pb(xx);}
        REP(step,0LL,lo)
        {
            REP(i,0,N-(1LL<<step)+1LL)
            {
                if(step==0) {v[i][0]=a[i];}
                else {v[i][step]=max(v[i][step-1],v[i+(1LL<<(step-1))][step-1]);}
            }
        }
    }
    
    T query(ll l, ll r)
    {
        ll step=(ll) floor((ld) log2(r-l+1LL));
        return max(v[l][step],v[r-(1LL<<step)+1LL][step]);
    }
};


int main()
{
    ios_base::sync_with_stdio(0);
    cin.tie(0); cout.tie(0);
	cout.precision(20);
	ll N; cin>>N; f = vector<ll>(N,-1); w = vector<ll>(N,-1); visited = vector<bool>(N,false); adj=vector<vector<ll> >(N,vector<ll>());
    REP(i,0,N) {cin>>f[i]>>w[i]; f[i]--; adj[i].pb(f[i]); adj[f[i]].pb(i);}
    ll ans = 0LL; ll node; ll C;
    REP(s,0,N)
    {
        if(visited[s]) {continue;}
        ll bestval = 0; ll thisval;
        vector<ll> cycle = Floyd(s); C = cycle.size();
        REP(i,0,cycle.size()) {node=cycle[i]; visited[node]=true;}
        vector<ll> val(C,0);
        REP(i,0,cycle.size()) 
        {
            bestpath = 0;
            val[i]=DFS(cycle[i]);
            bestval = max(bestval,bestpath);
        }
        vector<ll> ps; ll cursum=0;
        REP(i,0,2*C) {node = cycle[i%C]; ps.pb(cursum+val[i%C]); cursum+=w[node];}
        SparseTable<ll> S(ps);
        REP(i,0,C)
        {
            thisval=S.query(i+1,i+C-1)-(ps[i]-val[i])+val[i];
            bestval = max(thisval,bestval);
        }
        ans+=bestval;
    }
    cout<<ans<<endl;
    return 0;
}

Compilation message

islands.cpp:1: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    1 | #pragma GCC optimization ("O3")
      | 
islands.cpp:2: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    2 | #pragma GCC optimization ("unroll-loops")
      |
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 456 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 604 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 604 KB Output is correct
2 Correct 3 ms 1372 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 2436 KB Output is correct
2 Correct 15 ms 8880 KB Output is correct
3 Correct 6 ms 2396 KB Output is correct
4 Correct 3 ms 1372 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 20 ms 12744 KB Output is correct
2 Correct 32 ms 16640 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 48 ms 25792 KB Output is correct
2 Correct 95 ms 52096 KB Output is correct
3 Correct 134 ms 87660 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 117 ms 41268 KB Output is correct
2 Correct 197 ms 129336 KB Output is correct
3 Runtime error 142 ms 131072 KB Execution killed with signal 9
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 183 ms 94200 KB Output is correct
2 Runtime error 358 ms 131072 KB Execution killed with signal 9
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 268 ms 131072 KB Output is correct
2 Correct 225 ms 109936 KB Output is correct
3 Runtime error 249 ms 131072 KB Execution killed with signal 9
4 Halted 0 ms 0 KB -