Submission #988436

# Submission time Handle Problem Language Result Execution time Memory
988436 2024-05-24T17:15:58 Z GrindMachine Skyscraper (JOI16_skyscraper) C++17
100 / 100
563 ms 347016 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(...) 42
#endif

/*

refs:
https://usaco.guide/problems/joi-2016skyscraper/solution
read it long back, recollected the ideas from there when solving the problem

*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

void solve(int test_case)
{
    ll n,m; cin >> n >> m;
    vector<ll> a(n+5);
    rep1(i,n) cin >> a[i];
    sort(a.begin()+1,a.begin()+n+1);
    a[n+1] = inf1;

    if(n == 1){
        cout << 1 << endl;
        return;
    }

    ll dp[n+5][n+5][m+5][2][2];
    memset(dp,0,sizeof dp);
    dp[1][0][0][0][0] = 1;

    rep1(i,n){
        ll d = a[i+1]-a[i];

        rep(j,n+1){
            rep(k,m+1){
                rep(x,2){
                    rep(y,2){
                        dp[i][j][k][x][y] %= MOD;
                        ll val = dp[i][j][k][x][y];

                        // new
                        {
                            ll spaces = 2*(j+1)-x-y;
                            ll k2 = k+spaces*d;
                            if(k2 >= 0 and k2 <= m){
                                dp[i+1][j+1][k2][x][y] += val;
                            }
                        }

                        // connect to 1 comp
                        {
                            ll spaces = 2*j-x-y;
                            ll k2 = k+spaces*d;
                            if(k2 >= 0 and k2 <= m){
                                dp[i+1][j][k2][x][y] += val*spaces;
                            }
                        }

                        // connect to 2 comps
                        {
                            ll spaces = 2*(j-1)-x-y;
                            ll k2 = k+spaces*d;
                            if(k2 >= 0 and k2 <= m){
                                ll ways = 0;

                                // both non-spl
                                ways += (j-x-y)*(j-x-y-1);
                                amax(ways,0ll);

                                // x
                                if(x){
                                    ways += j-1;
                                }

                                // y
                                if(y){
                                    ways += j-1;
                                }

                                // x and y
                                if(x and y){
                                    if(i == n) ways--;
                                    else ways -= 2;
                                }

                                dp[i+1][j-1][k2][x][y] += val*ways;
                            }
                        }

                        // left end
                        if(!x){
                            // new
                            {
                                ll spaces = 2*(j+1)-(x|1)-y;
                                ll k2 = k+spaces*d;
                                if(k2 >= 0 and k2 <= m){
                                    dp[i+1][j+1][k2][x|1][y] += val;
                                }
                            }

                            // connect to 1 comp
                            {
                                ll spaces = 2*j-(x|1)-y;
                                ll k2 = k+spaces*d;
                                ll ways = j;
                                if(y and i != n) ways--; 
                                if(k2 >= 0 and k2 <= m){
                                    dp[i+1][j][k2][x|1][y] += val*ways;
                                }
                            }
                        }

                        // right end
                        if(!y){
                            // new
                            {
                                ll spaces = 2*(j+1)-x-(y|1);
                                ll k2 = k+spaces*d;
                                if(k2 >= 0 and k2 <= m){
                                    dp[i+1][j+1][k2][x][y|1] += val;
                                }
                            }

                            // connect to 1 comp
                            {
                                ll spaces = 2*j-x-(y|1);
                                ll k2 = k+spaces*d;
                                ll ways = j;
                                if(x and i != n) ways--;
                                if(k2 >= 0 and k2 <= m){
                                    dp[i+1][j][k2][x][y|1] += val*ways;
                                }
                            }
                        }      
                    }
                }
            }
        }
    }

    ll ans = 0;
    rep(k,m+1){
        ans += dp[n+1][1][k][1][1];
    }

    ans %= MOD;
    cout << ans << endl;
}

int main()
{
    fastio;

    int t = 1;
    // cin >> t;

    rep1(i, t) {
        solve(i);
    }

    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 1 ms 676 KB Output is correct
5 Correct 6 ms 5468 KB Output is correct
6 Correct 5 ms 4700 KB Output is correct
7 Correct 2 ms 1112 KB Output is correct
8 Correct 1 ms 860 KB Output is correct
9 Correct 5 ms 5268 KB Output is correct
10 Correct 1 ms 1116 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 860 KB Output is correct
2 Correct 2 ms 1368 KB Output is correct
3 Correct 1 ms 860 KB Output is correct
4 Correct 2 ms 1372 KB Output is correct
5 Correct 2 ms 1372 KB Output is correct
6 Correct 2 ms 1372 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 860 KB Output is correct
9 Correct 2 ms 1112 KB Output is correct
10 Correct 2 ms 1372 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 1 ms 676 KB Output is correct
5 Correct 6 ms 5468 KB Output is correct
6 Correct 5 ms 4700 KB Output is correct
7 Correct 2 ms 1112 KB Output is correct
8 Correct 1 ms 860 KB Output is correct
9 Correct 5 ms 5268 KB Output is correct
10 Correct 1 ms 1116 KB Output is correct
11 Correct 1 ms 860 KB Output is correct
12 Correct 2 ms 1368 KB Output is correct
13 Correct 1 ms 860 KB Output is correct
14 Correct 2 ms 1372 KB Output is correct
15 Correct 2 ms 1372 KB Output is correct
16 Correct 2 ms 1372 KB Output is correct
17 Correct 1 ms 604 KB Output is correct
18 Correct 1 ms 860 KB Output is correct
19 Correct 2 ms 1112 KB Output is correct
20 Correct 2 ms 1372 KB Output is correct
21 Correct 4 ms 3160 KB Output is correct
22 Correct 340 ms 178764 KB Output is correct
23 Correct 549 ms 341160 KB Output is correct
24 Correct 432 ms 258132 KB Output is correct
25 Correct 563 ms 345172 KB Output is correct
26 Correct 470 ms 293972 KB Output is correct
27 Correct 158 ms 86356 KB Output is correct
28 Correct 194 ms 105716 KB Output is correct
29 Correct 344 ms 199584 KB Output is correct
30 Correct 551 ms 347016 KB Output is correct