Submission #986260

# Submission time Handle Problem Language Result Execution time Memory
986260 2024-05-20T07:23:42 Z andrei_iorgulescu Tug of War (BOI15_tug) C++14
100 / 100
1715 ms 13784 KB
#include <bits/stdc++.h>

using namespace std;

int n,k,dif0;
multiset<pair<int,int>> g[60005];

bool viz[60005];
int vll;

void dfs(int nod,int parval)
{
    //cout << nod << ' ' << vll << endl;
    viz[nod] = true;
    for (auto it : g[nod])
    {
        if (!viz[it.first])
        {
            if (nod <= n)
                vll += it.second;
            else
                vll -= it.second;
            dfs(it.first,it.second);
            return;
        }
    }
    for (auto it : g[nod])
    {
        if (nod <= n)
            vll += it.second;
        else
            vll -= it.second;
    }
    if (nod <= n)
        vll -= parval;
    else
        vll += parval;
}

bitset<1200005> dp;///shiftat cu 600000

int main()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
    cin >> n >> k;
    for (int i = 1; i <= 2 * n; i++)
    {
        int x,y,z;
        cin >> x >> y >> z;
        g[x].insert({y + n,z});
        g[y + n].insert({x,z});
    }
    set<pair<int,int>> degmin;
    for (int i = 1; i <= 2 * n; i++)
    {
        degmin.insert({g[i].size(),i});
    }
    while (!degmin.empty() and (*degmin.begin()).first < 2)
    {
        pair<int,int> pr = *degmin.begin();
        degmin.erase(degmin.begin());
        if (pr.first == 0)
        {
            cout << "NO";
            return 0;
        }
        int nod = pr.second;
        int vecin = (*g[nod].begin()).first;
        int cost = (*g[nod].begin()).second;
        if (nod <= n)
            dif0 += cost;
        else
            dif0 -= cost;
        g[nod].clear();
        g[vecin].erase(g[vecin].find({nod,cost}));
        int dgg = (int)g[vecin].size() + 1;
        degmin.erase({dgg,vecin});
        degmin.insert({dgg - 1,vecin});
    }
    vector<int> noduri;
    for (auto it : degmin)
        noduri.push_back(it.second);
    vector<int> vals;
    for (auto it : noduri)
    {
        if (!viz[it])
        {
            vll = 0;
            dfs(it,0);
            vals.push_back(abs(vll));
            //cout << abs(vll) << endl;
        }
    }
    dp[dif0 + 600000] = 1;
    //cout << dif0 << endl;
    for (auto it : vals)
    {
        dp = (dp << it) | (dp >> it);

    }
    for (int i = 600000 - k; i <= 600000 + k; i++)
    {
        if (dp[i])
        {
            cout << "YES";
            return 0;
        }
    }
    cout << "NO";
    return 0;
}

/**
Fac un graf bipartit cu muchie L[i] -- R[j] pentru un om cu i sau j
deg(i) = 0 => NO
deg(i) = 1 => fac muchia aia sa fie asa si o elimin din graf, impreuna cu nodul evident
daca orice deg(i) >= 2, sum(deg(i)) >= 4N dar sum(deg(i)) == 4N deci deg(i) = 2 pentru fiecare i
graful poate fi impartit in cicluri, la fiecare ciclu am doua variante

Fie D = diferenta care s-a creat pana sa ajung la graful asta din cicluri
Raspunsul pentru s[i] = 1 este clar YES, acum sa vad cand am si k si s-uri diferite
Fiecare ciclu poate sa imi genereze doua valori, a[i] si b[i] sa zicem (fie m numarul de cicluri)
dp[i][j] = pot sa fac din primele i cicluri valoarea j (M * N * 20 de stari)
M e O(N) worst case (gen, N / 2) deci tot pot avea N^2 * 10 stari
Average bitset W lol, gen acum am aprox N^2 / 6 sau cv care ar trebui sa intre oricum
**/
# Verdict Execution time Memory Grader output
1 Correct 3 ms 3928 KB Output is correct
2 Correct 2 ms 3672 KB Output is correct
3 Correct 2 ms 3676 KB Output is correct
4 Correct 2 ms 3676 KB Output is correct
5 Correct 2 ms 3676 KB Output is correct
6 Correct 2 ms 3676 KB Output is correct
7 Correct 2 ms 3676 KB Output is correct
8 Correct 2 ms 3676 KB Output is correct
9 Correct 2 ms 3676 KB Output is correct
10 Correct 2 ms 3676 KB Output is correct
11 Correct 2 ms 3672 KB Output is correct
12 Correct 2 ms 3676 KB Output is correct
13 Correct 2 ms 3676 KB Output is correct
14 Correct 2 ms 3676 KB Output is correct
15 Correct 2 ms 3676 KB Output is correct
16 Correct 2 ms 3676 KB Output is correct
17 Correct 2 ms 3676 KB Output is correct
18 Correct 2 ms 3676 KB Output is correct
19 Correct 2 ms 3676 KB Output is correct
20 Correct 2 ms 3676 KB Output is correct
21 Correct 1 ms 3676 KB Output is correct
22 Correct 2 ms 3676 KB Output is correct
23 Correct 2 ms 3676 KB Output is correct
24 Correct 2 ms 3676 KB Output is correct
25 Correct 2 ms 3672 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 3928 KB Output is correct
2 Correct 2 ms 3672 KB Output is correct
3 Correct 2 ms 3676 KB Output is correct
4 Correct 2 ms 3676 KB Output is correct
5 Correct 2 ms 3676 KB Output is correct
6 Correct 2 ms 3676 KB Output is correct
7 Correct 2 ms 3676 KB Output is correct
8 Correct 2 ms 3676 KB Output is correct
9 Correct 2 ms 3676 KB Output is correct
10 Correct 2 ms 3676 KB Output is correct
11 Correct 2 ms 3672 KB Output is correct
12 Correct 2 ms 3676 KB Output is correct
13 Correct 2 ms 3676 KB Output is correct
14 Correct 2 ms 3676 KB Output is correct
15 Correct 2 ms 3676 KB Output is correct
16 Correct 2 ms 3676 KB Output is correct
17 Correct 2 ms 3676 KB Output is correct
18 Correct 2 ms 3676 KB Output is correct
19 Correct 2 ms 3676 KB Output is correct
20 Correct 2 ms 3676 KB Output is correct
21 Correct 1 ms 3676 KB Output is correct
22 Correct 2 ms 3676 KB Output is correct
23 Correct 2 ms 3676 KB Output is correct
24 Correct 2 ms 3676 KB Output is correct
25 Correct 2 ms 3672 KB Output is correct
26 Correct 106 ms 4444 KB Output is correct
27 Correct 19 ms 4700 KB Output is correct
28 Correct 106 ms 4444 KB Output is correct
29 Correct 22 ms 4440 KB Output is correct
30 Correct 106 ms 4444 KB Output is correct
31 Correct 17 ms 4440 KB Output is correct
32 Correct 106 ms 4524 KB Output is correct
33 Correct 17 ms 4440 KB Output is correct
34 Correct 11 ms 4444 KB Output is correct
35 Correct 18 ms 4444 KB Output is correct
36 Correct 108 ms 4444 KB Output is correct
37 Correct 17 ms 4444 KB Output is correct
38 Correct 109 ms 4512 KB Output is correct
39 Correct 18 ms 4440 KB Output is correct
40 Correct 111 ms 4692 KB Output is correct
41 Correct 17 ms 4440 KB Output is correct
42 Correct 106 ms 4440 KB Output is correct
43 Correct 17 ms 4444 KB Output is correct
44 Correct 105 ms 4444 KB Output is correct
45 Correct 17 ms 4444 KB Output is correct
46 Correct 106 ms 4528 KB Output is correct
47 Correct 3 ms 4188 KB Output is correct
48 Correct 55 ms 4280 KB Output is correct
49 Correct 56 ms 4508 KB Output is correct
50 Correct 119 ms 4440 KB Output is correct
51 Correct 106 ms 4444 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 280 ms 7080 KB Output is correct
2 Correct 10 ms 6744 KB Output is correct
3 Correct 289 ms 7084 KB Output is correct
4 Correct 11 ms 6744 KB Output is correct
5 Correct 297 ms 7076 KB Output is correct
6 Correct 16 ms 6744 KB Output is correct
7 Correct 290 ms 7080 KB Output is correct
8 Correct 9 ms 6744 KB Output is correct
9 Correct 294 ms 7080 KB Output is correct
10 Correct 10 ms 6748 KB Output is correct
11 Correct 291 ms 7080 KB Output is correct
12 Correct 10 ms 6744 KB Output is correct
13 Correct 295 ms 7004 KB Output is correct
14 Correct 282 ms 7080 KB Output is correct
15 Correct 10 ms 6744 KB Output is correct
16 Correct 284 ms 7004 KB Output is correct
17 Correct 10 ms 6748 KB Output is correct
18 Correct 285 ms 7156 KB Output is correct
19 Correct 9 ms 6748 KB Output is correct
20 Correct 273 ms 7084 KB Output is correct
21 Correct 10 ms 6744 KB Output is correct
22 Correct 154 ms 7260 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 3928 KB Output is correct
2 Correct 2 ms 3672 KB Output is correct
3 Correct 2 ms 3676 KB Output is correct
4 Correct 2 ms 3676 KB Output is correct
5 Correct 2 ms 3676 KB Output is correct
6 Correct 2 ms 3676 KB Output is correct
7 Correct 2 ms 3676 KB Output is correct
8 Correct 2 ms 3676 KB Output is correct
9 Correct 2 ms 3676 KB Output is correct
10 Correct 2 ms 3676 KB Output is correct
11 Correct 2 ms 3672 KB Output is correct
12 Correct 2 ms 3676 KB Output is correct
13 Correct 2 ms 3676 KB Output is correct
14 Correct 2 ms 3676 KB Output is correct
15 Correct 2 ms 3676 KB Output is correct
16 Correct 2 ms 3676 KB Output is correct
17 Correct 2 ms 3676 KB Output is correct
18 Correct 2 ms 3676 KB Output is correct
19 Correct 2 ms 3676 KB Output is correct
20 Correct 2 ms 3676 KB Output is correct
21 Correct 1 ms 3676 KB Output is correct
22 Correct 2 ms 3676 KB Output is correct
23 Correct 2 ms 3676 KB Output is correct
24 Correct 2 ms 3676 KB Output is correct
25 Correct 2 ms 3672 KB Output is correct
26 Correct 106 ms 4444 KB Output is correct
27 Correct 19 ms 4700 KB Output is correct
28 Correct 106 ms 4444 KB Output is correct
29 Correct 22 ms 4440 KB Output is correct
30 Correct 106 ms 4444 KB Output is correct
31 Correct 17 ms 4440 KB Output is correct
32 Correct 106 ms 4524 KB Output is correct
33 Correct 17 ms 4440 KB Output is correct
34 Correct 11 ms 4444 KB Output is correct
35 Correct 18 ms 4444 KB Output is correct
36 Correct 108 ms 4444 KB Output is correct
37 Correct 17 ms 4444 KB Output is correct
38 Correct 109 ms 4512 KB Output is correct
39 Correct 18 ms 4440 KB Output is correct
40 Correct 111 ms 4692 KB Output is correct
41 Correct 17 ms 4440 KB Output is correct
42 Correct 106 ms 4440 KB Output is correct
43 Correct 17 ms 4444 KB Output is correct
44 Correct 105 ms 4444 KB Output is correct
45 Correct 17 ms 4444 KB Output is correct
46 Correct 106 ms 4528 KB Output is correct
47 Correct 3 ms 4188 KB Output is correct
48 Correct 55 ms 4280 KB Output is correct
49 Correct 56 ms 4508 KB Output is correct
50 Correct 119 ms 4440 KB Output is correct
51 Correct 106 ms 4444 KB Output is correct
52 Correct 280 ms 7080 KB Output is correct
53 Correct 10 ms 6744 KB Output is correct
54 Correct 289 ms 7084 KB Output is correct
55 Correct 11 ms 6744 KB Output is correct
56 Correct 297 ms 7076 KB Output is correct
57 Correct 16 ms 6744 KB Output is correct
58 Correct 290 ms 7080 KB Output is correct
59 Correct 9 ms 6744 KB Output is correct
60 Correct 294 ms 7080 KB Output is correct
61 Correct 10 ms 6748 KB Output is correct
62 Correct 291 ms 7080 KB Output is correct
63 Correct 10 ms 6744 KB Output is correct
64 Correct 295 ms 7004 KB Output is correct
65 Correct 282 ms 7080 KB Output is correct
66 Correct 10 ms 6744 KB Output is correct
67 Correct 284 ms 7004 KB Output is correct
68 Correct 10 ms 6748 KB Output is correct
69 Correct 285 ms 7156 KB Output is correct
70 Correct 9 ms 6748 KB Output is correct
71 Correct 273 ms 7084 KB Output is correct
72 Correct 10 ms 6744 KB Output is correct
73 Correct 154 ms 7260 KB Output is correct
74 Correct 1590 ms 13664 KB Output is correct
75 Correct 94 ms 13524 KB Output is correct
76 Correct 1597 ms 13784 KB Output is correct
77 Correct 100 ms 13420 KB Output is correct
78 Correct 1615 ms 13656 KB Output is correct
79 Correct 1563 ms 13656 KB Output is correct
80 Correct 91 ms 13524 KB Output is correct
81 Correct 109 ms 13420 KB Output is correct
82 Correct 1592 ms 13664 KB Output is correct
83 Correct 1611 ms 13664 KB Output is correct
84 Correct 94 ms 13516 KB Output is correct
85 Correct 1621 ms 13660 KB Output is correct
86 Correct 93 ms 13536 KB Output is correct
87 Correct 1608 ms 13656 KB Output is correct
88 Correct 97 ms 13528 KB Output is correct
89 Correct 1569 ms 13660 KB Output is correct
90 Correct 93 ms 13528 KB Output is correct
91 Correct 1692 ms 13668 KB Output is correct
92 Correct 105 ms 13412 KB Output is correct
93 Correct 1658 ms 13664 KB Output is correct
94 Correct 39 ms 12876 KB Output is correct
95 Correct 847 ms 13400 KB Output is correct
96 Correct 865 ms 13412 KB Output is correct
97 Correct 1691 ms 13660 KB Output is correct
98 Correct 1715 ms 13656 KB Output is correct