/*This problem needs arrays instad of vectors due to
extremely tight ML and TL*/
#include <bits/stdc++.h>
#define pb push_back
#define MOD(var, M) (((var) >= (M)) ? ((var) - M) : (var))
using namespace std;
const int MAXN = 500;
const int INF = 1e9;
int N, K;
bool stage[MAXN][MAXN];
vector<vector<int>> adj_list;
// dp[l][r][k]: Maximum number of stages if enclosed by l, r
// and being in the stages such that l < s < r'
// Where r' = l > r ? r = r + N : r
// k == 0: Starting in l
// k == 1: Starting in r
int dp[MAXN][MAXN][2];
// Before the intersection with the first stage
// You can only choose one way to follow
// Either from l to r or from r to l
int bef[MAXN][MAXN][2];
int main(void)
{
scanf("%d %d", &N, &K);
adj_list.resize(N);
for (int i = 0; i < N; i++) {
int v;
scanf("%d", &v);
while (v != 0) {
v--;
stage[i][v] = true;
adj_list[i].pb(v);
adj_list[i].pb(v + N);
scanf("%d", &v);
}
sort(adj_list[i].begin(), adj_list[i].end());
}
for (int len = 1; len <= N; len++) {
for (int l = 0; l < N; l++) {
int r_actual = l + len - 1;
int r = MOD(r_actual, N);
bef[l][r][0] = bef[l][r][1] = -INF;
for (int i_actual = l + 1; i_actual < r_actual; i_actual++) {
int i = MOD(i_actual, N);
dp[l][r][0] = max(dp[l][r][0], dp[l][i][0]);
dp[l][r][1] = max(dp[l][r][1], dp[i][r][1]);
if (bef[l][i][0] != -INF && bef[i][r][0] != -INF) {
bef[l][r][0] = max(bef[l][r][0], bef[l][i][0] + bef[i][r][0]);
}
if (bef[l][i][1] != -INF && bef[i][r][1] != -INF) {
bef[l][r][1] = max(bef[l][r][1], bef[l][i][1] + bef[i][r][1]);
}
if (stage[l][i]) {
dp[l][r][0] = max(dp[l][r][0], 1 + dp[i][r][0]);
}
if (stage[r][i]) {
dp[l][r][1] = max(dp[l][r][1], 1 + dp[l][i][1]);
}
}
if (stage[l][r]) {
int res = 1 + dp[MOD(l + 1, N)][r][1];
if (res >= dp[l][r][0]) {
dp[l][r][0] = res;
}
bef[l][r][0] = max(bef[l][r][0], 1);
}
if (stage[r][l]) {
int res = 1 + dp[l][MOD(r_actual - 1, N)][0];
if (res >= dp[l][r][1]) {
dp[l][r][1] = res;
}
bef[l][r][1] = max(bef[l][r][1], 1);
}
}
}
int ans = 0;
int starting = 0;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (dp[i][j][0] > ans) {
ans = dp[i][j][0];
starting = i;
}
if (dp[i][j][1] > ans) {
ans = dp[i][j][1];
starting = j;
}
}
}
if (K == 0) {
printf("%d\n%d\n", ans, starting + 1);
return 0;
}
// Unite bef(before intersection) with dp(after intersection)
for (int len = 0; len <= N; len++) {
for (int l = 0; l < N; l++) {
int r_actual = l + len - 1;
int r = MOD(r_actual, N);
bool g1 = stage[l][r];
bool g2 = stage[r][l];
for (int i_actual = l + 1; i_actual < r_actual; i_actual++) {
int i = MOD(i_actual, N);
int res = -INF;
int s = -1;
if (g2) {
res = bef[l][i][0];
s = r;
}
if (g1 && res < bef[i][r][1]) {
res = bef[i][r][1];
s = l;
}
res++;
if (res < 0) {
continue;
}
int j1 = upper_bound(adj_list[i].begin(), adj_list[i].end(), r_actual) - adj_list[i].begin();
int j2 = lower_bound(adj_list[i].begin(), adj_list[i].end(), N + l) - adj_list[i].begin() - 1;
int v = 0;
for (int j = max(j1, 0); j <= min(j2, (int)adj_list[i].size()); j++) {
int n = adj_list[i][j];
if (n < N + l) {
v = max(v, 1 + dp[MOD(n, N)][MOD(l - 1 + N, N)][0]);
}
if (n > r_actual) {
v = max(v, 1 + dp[MOD(r + 1, N)][MOD(n, N)][1]);
}
}
if (ans < v + res) {
ans = v + res;
starting = s;
}
}
}
}
printf("%d\n%d\n", ans, starting + 1);
return 0;
}
Compilation message
race.cpp: In function 'int main()':
race.cpp:33:10: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
33 | scanf("%d %d", &N, &K);
| ~~~~~^~~~~~~~~~~~~~~~~
race.cpp:39:14: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
39 | scanf("%d", &v);
| ~~~~~^~~~~~~~~~
race.cpp:46:18: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
46 | scanf("%d", &v);
| ~~~~~^~~~~~~~~~
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
0 ms |
348 KB |
Output is correct |
2 |
Correct |
1 ms |
600 KB |
Output is correct |
3 |
Correct |
1 ms |
604 KB |
Output is correct |
4 |
Correct |
1 ms |
604 KB |
Output is correct |
5 |
Correct |
2 ms |
2652 KB |
Output is correct |
6 |
Correct |
4 ms |
2652 KB |
Output is correct |
7 |
Correct |
3 ms |
2652 KB |
Output is correct |
8 |
Correct |
7 ms |
2648 KB |
Output is correct |
9 |
Correct |
6 ms |
2652 KB |
Output is correct |
10 |
Correct |
5 ms |
2908 KB |
Output is correct |
11 |
Correct |
8 ms |
2652 KB |
Output is correct |
12 |
Correct |
121 ms |
3340 KB |
Output is correct |
13 |
Correct |
258 ms |
3928 KB |
Output is correct |
14 |
Correct |
285 ms |
4188 KB |
Output is correct |
15 |
Correct |
1864 ms |
4876 KB |
Output is correct |
16 |
Correct |
2575 ms |
5052 KB |
Output is correct |
17 |
Correct |
1885 ms |
4868 KB |
Output is correct |
18 |
Correct |
545 ms |
4696 KB |
Output is correct |
19 |
Execution timed out |
3020 ms |
4952 KB |
Time limit exceeded |
20 |
Execution timed out |
3011 ms |
4952 KB |
Time limit exceeded |