답안 #982596

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
982596 2024-05-14T13:09:39 Z PanosPask Sailing Race (CEOI12_race) C++14
75 / 100
1714 ms 5096 KB
/*This problem needs arrays instad of vectors due to
extremely tight ML and TL*/

#include <bits/stdc++.h>
#define pb push_back
#define MOD(var, M) (((var) >= (M)) ? ((var) - M) : (var))

using namespace std;

const int MAXN = 500;
const int INF = 1e9;

int N, K;
bool stage[MAXN][MAXN];

vector<vector<int>> adj_list;

// dp[l][r][k]:  Maximum number of stages if enclosed by l, r
// and being in the stages such that l < s < r'
// Where r' = l > r ? r = r + N : r

// k == 0: Starting in l
// k == 1: Starting in r
int dp[MAXN][MAXN][2];

// Before the intersection with the first stage
// You can only choose one way to follow
// Either from l to r or from r to l
int bef[MAXN][MAXN][2];

int main(void)
{
    scanf("%d %d", &N, &K);

    adj_list.resize(N);

    for (int i = 0; i < N; i++) {
        int v;
        scanf("%d", &v);

        while (v != 0) {
            v--;
            stage[i][v] = true;
            adj_list[i].pb(v);
            adj_list[i].pb(v + N);
            scanf("%d", &v);
        }

        sort(adj_list[i].begin(), adj_list[i].end());
    }

    for (int len = 1; len <= N; len++) {
        for (int l = 0; l < N; l++) {
            int r_actual = l + len - 1;
            int r = MOD(r_actual, N);

            bef[l][r][0] = bef[l][r][1] = -INF;

            for (int i_actual = l + 1; i_actual < r_actual; i_actual++) {
                int i = MOD(i_actual, N);

                dp[l][r][0] = max(dp[l][r][0], dp[l][i][0]);
                dp[l][r][1] = max(dp[l][r][1], dp[i][r][1]);

                if (bef[l][i][0] != -INF && bef[i][r][0] != -INF) {
                    bef[l][r][0] = max(bef[l][r][0], bef[l][i][0] + bef[i][r][0]);
                }
                if (bef[l][i][1] != -INF && bef[i][r][1] != -INF) {
                    bef[l][r][1] = max(bef[l][r][1], bef[l][i][1] + bef[i][r][1]);
                }

                if (stage[l][i]) {
                    dp[l][r][0] = max(dp[l][r][0], 1 + dp[i][r][0]);
                }
                if (stage[r][i]) {
                    dp[l][r][1] = max(dp[l][r][1], 1 + dp[l][i][1]);
                }
            }

            if (stage[l][r]) {
                int res = 1 + dp[MOD(l + 1, N)][r][1];
                if (res >= dp[l][r][0]) {
                    dp[l][r][0] = res;
                }

                bef[l][r][0] = max(bef[l][r][0], 1);
            }
            if (stage[r][l]) {
                int res = 1 + dp[l][MOD(r_actual - 1, N)][0];
                if (res >= dp[l][r][1]) {
                    dp[l][r][1] = res;
                }

                bef[l][r][1] = max(bef[l][r][1], 1);
            }
        }
    }

    int ans = 0;
    int starting = 0;
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            if (dp[i][j][0] > ans) {
                ans = dp[i][j][0];
                starting = i;
            }
            if (dp[i][j][1] > ans) {
                ans = dp[i][j][1];
                starting = j;
            }
        }
    }
    if (K == 0) {
        printf("%d\n%d\n", ans, starting + 1);
        return 0;
    }

    // Unite bef(before intersection) with dp(after intersection)
    for (int len = 0; len <= N; len++) {
        for (int l = 0; l < N; l++) {
            int r_actual = l + len - 1;
            int r = MOD(r_actual, N);

            bool g1 = stage[l][r];
            bool g2 = stage[r][l];

            for (int i_actual = l + 1; i_actual < r_actual; i_actual++) {
                int i = MOD(i_actual, N);

                int res = -INF;
                int s = -1;
                if (g2) {
                    res = bef[l][i][0];
                    s = r;
                }
                if (g1 && res < bef[i][r][1]) {
                    res = bef[i][r][1];
                    s = l;
                }
                res++;

                if (res < 0) {
                    continue;
                }

                int j1 = lower_bound(adj_list[i].begin(), adj_list[i].end(), r_actual) - adj_list[i].begin();
                int j2 = upper_bound(adj_list[i].begin(), adj_list[i].end(), N + l) - adj_list[i].begin() - 1;

                int v = 0;
                if (j1 < adj_list[i].size()) {
                    int n1 = adj_list[i][j1];
                    if (n1 < l + N) {
                        v = max(v, 1 + dp[MOD(n1, N)][MOD(l - 1 + N, N)][0]);
                    }
                }
                if (j2 >= 0) {
                    int n2 = adj_list[i][j2];
                    if (n2 > r_actual) {
                        v = max(v, 1 + dp[MOD(r + 1, N)][MOD(n2, N)][1]);
                    }
                }

                if (ans < v + res) {
                    ans = v + res;
                    starting = s;
                }
            }
        }
    }

    printf("%d\n%d\n", ans, starting + 1);

    return 0;
}

Compilation message

race.cpp: In function 'int main()':
race.cpp:150:24: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  150 |                 if (j1 < adj_list[i].size()) {
      |                     ~~~^~~~~~~~~~~~~~~~~~~~
race.cpp:33:10: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
   33 |     scanf("%d %d", &N, &K);
      |     ~~~~~^~~~~~~~~~~~~~~~~
race.cpp:39:14: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
   39 |         scanf("%d", &v);
      |         ~~~~~^~~~~~~~~~
race.cpp:46:18: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
   46 |             scanf("%d", &v);
      |             ~~~~~^~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 344 KB Output is correct
2 Incorrect 0 ms 600 KB Output isn't correct
3 Correct 1 ms 604 KB Output is correct
4 Incorrect 1 ms 604 KB Output isn't correct
5 Correct 2 ms 2652 KB Output is correct
6 Correct 4 ms 2652 KB Output is correct
7 Correct 3 ms 2652 KB Output is correct
8 Incorrect 7 ms 2652 KB Output isn't correct
9 Correct 5 ms 2652 KB Output is correct
10 Correct 5 ms 2908 KB Output is correct
11 Correct 8 ms 2908 KB Output is correct
12 Correct 93 ms 3164 KB Output is correct
13 Correct 221 ms 3924 KB Output is correct
14 Correct 277 ms 4252 KB Output is correct
15 Correct 1192 ms 4868 KB Output is correct
16 Incorrect 1417 ms 5056 KB Output isn't correct
17 Incorrect 1183 ms 4948 KB Output isn't correct
18 Correct 531 ms 4700 KB Output is correct
19 Correct 1680 ms 5096 KB Output is correct
20 Correct 1714 ms 4956 KB Output is correct