Submission #98127

#TimeUsernameProblemLanguageResultExecution timeMemory
98127qkxwsmFactories (JOI14_factories)C++14
15 / 100
8055 ms98540 KiB
#pragma GCC optimize ("O3") #pragma GCC target ("sse4") #include <bits/stdc++.h> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/assoc_container.hpp> #include <ext/rope> #include "factories.h" using namespace std; using namespace __gnu_pbds; using namespace __gnu_cxx; random_device(rd); mt19937 rng(rd()); const long long FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count(); struct custom_hash { template<class T> unsigned long long operator()(T v) const { unsigned long long x = v; x += FIXED_RANDOM; // x += 11400714819323198485ull; // x = (x ^ (x >> 30)) * 13787848793156543929ull; x = (x ^ (x >> 27)) * 10723151780598845931ull; return x ^ (x >> 31); } }; template<class T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; template<class T, class U> using hash_table = gp_hash_table<T, U, custom_hash>; template<class T> T randomize(T mod) { return (uniform_int_distribution<T>(0, mod - 1))(rng); } template<class T> void readi(T &x) { x = 0; bool negative = false; char c = ' '; while (c < '-') { c = getchar(); } if (c == '-') { negative = true; c = getchar(); } while (c >= '0') { x = x * 10 + (c - '0'); c = getchar(); } if (negative) { x = -x; } } template<class T> void printi(T output) { if (output == 0) { putchar('0'); return; } if (output < 0) { putchar('-'); output = -output; } int buf[20], n = 0; while(output) { buf[n] = ((output % 10)); output /= 10; n++; } for (n--; n >= 0; n--) { putchar(buf[n] + '0'); } return; } template<class T> void ckmin(T &a, T b) { a = min(a, b); } template<class T> void ckmax(T &a, T b) { a = max(a, b); } long long expo(long long a, long long e, long long mod) { return ((e == 0) ? 1 : ((expo(a * a % mod, e >> 1, mod)) * ((e & 1) ? a : 1) % mod)); } template<class T, class U> void nmod(T &x, U mod) { if (x >= mod) x -= mod; } template<class T> T gcd(T a, T b) { return (b ? gcd(b, a % b) : a); } #define y0 ___y0 #define y1 ___y1 #define MP make_pair #define PB push_back #define LB lower_bound #define UB upper_bound #define fi first #define se second #define DBG(x) cerr << #x << " = " << (x) << endl #define SZ(x) ((int) ((x).size())) #define FOR(i, a, b) for (auto i = (a); i < (b); i++) #define FORD(i, a, b) for (auto i = (a) - 1; i >= (b); i--) #define ALL(x) (x).begin(), (x).end() const long double PI = 4.0 * atan(1.0); const long double EPS = 1e-9; #define MAGIC 347 #define SINF 10007 #define CO 1000007 #define INF 1000000007 #define BIG 1000000931 #define LARGE 1696969696967ll #define GIANT 2564008813937411ll #define LLINF 2696969696969696969ll #define MAXN 500013 typedef long long ll; typedef long double ld; typedef pair<int, int> pii; typedef pair<ll, ll> pll; typedef pair<ld, ld> pdd; typedef vector<int> vi; typedef vector<ll> vl; typedef vector<ld> vd; typedef vector<pii> vpi; typedef vector<pll> vpl; typedef vector<pdd> vpd; int N, T; vpi edge[MAXN]; int parent[MAXN], st[MAXN], ft[MAXN]; ll depth[MAXN]; int ancestor[25][MAXN]; ll dp[MAXN]; vi L, R; ll ans; void dfs(int u) { st[u] = ft[u] = T; T++; for (pii p : edge[u]) { int v = p.se, d = p.fi; if (v == parent[u]) continue; parent[v] = u; depth[v] = depth[u] + d; dfs(v); ft[u] = ft[v]; } return; } bool insubt(int u, int v) { return (u == N || (st[u] <= st[v] && st[v] <= ft[u])); } int lca(int u, int v) { if (insubt(v, u)) return v; FORD(i, 20, 0) { if (!insubt(ancestor[i][v], u)) { v = ancestor[i][v]; } } return parent[v]; } ll dist(int u, int v) { // cerr << u << ' ' << v << ' ' << lca(u, v) << endl; return depth[u] + depth[v] - 2 * depth[lca(u, v)]; } void Init(int n, int A[], int B[], int D[]) { N = n; FOR(i, 0, N - 1) { int u = A[i], v = B[i], d = D[i]; edge[u].PB({d, v}); edge[v].PB({d, u}); } parent[0] = N; depth[0] = 0; dfs(0); FOR(i, 0, 24) { ancestor[i][N] = N; } FOR(i, 0, N) { ancestor[0][i] = parent[i]; // DBG(parent[i]); } FOR(i, 1, 23) { FOR(j, 0, N) { ancestor[i][j] = ancestor[i - 1][ancestor[i - 1][j]]; } } } void solve(int u) { //for each vertex, calculate minimum distance to a colored vertex! } long long Query(int S, int X[], int T, int Y[]) { ans = LLINF; L.clear(); R.clear(); FOR(i, 0, S) { L.PB(X[i]); } FOR(i, 0, T) { R.PB(Y[i]); } if (SZ(L) * SZ(R) <= N) { for (int u : L) { for (int v : R) { ckmin(ans, dist(u, v)); } } } else { //now do some dp! priority_queue<pll, vector<pll>, greater<pll> > pq; FOR(i, 0, N) { dp[i] = LLINF; } for (int x : L) { dp[x] = 0; pq.push({0, x}); } while(!pq.empty()) { ll d = pq.top().fi; int u = pq.top().se; pq.pop(); if (dp[u] != d) continue; for (pii p : edge[u]) { int v = p.se; ll nd = d + p.fi; if (nd < dp[v]) { dp[v] = nd; pq.push({nd, v}); } } } for (int x : R) { ckmin(ans, dp[x]); } } return ans; } /* READ READ READ * int overflow, maxn too small, special cases (n=1?, two distinct?), cin.tie() interactive * reread the problem, try small cases * note down possible sources of error as you go * do smth instead of nothing */
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...