Submission #971842

# Submission time Handle Problem Language Result Execution time Memory
971842 2024-04-29T11:28:02 Z GrindMachine Dancing Elephants (IOI11_elephants) C++17
100 / 100
3437 ms 25020 KB
#pragma GCC optimize("O3,unroll-loops")

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*

refs:
edi

*/

const int MOD = 1e9 + 7;
const int N = 2e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;
const int B = 405;

#include "elephants.h"

int n,L;
vector<int> a;
set<pii> st;
vector<pii> blocks[N/B+5];
vector<int> block_num, cams, mx_point;

void upd_block(int b){
    if(blocks[b].empty()) return;
    auto &curr = blocks[b];
    int siz = sz(curr);
    int ptr = siz-1;
    rev(i,siz-1,0){
        while(curr[ptr].ff-curr[i].ff > L){
            ptr--;
        }

        int j = curr[i].ss;

        if(ptr+1 == siz){
            cams[j] = 1;
            mx_point[j] = curr[i].ff+L;
        }
        else{
            int k = curr[ptr+1].ss;
            cams[j] = cams[k]+1;
            mx_point[j] = mx_point[k];
        }
    }
}

void build(){
    int ind = 0;
    rep(i,n/B+1){
        blocks[i].clear();
    }

    for(auto [x,i] : st){
        blocks[ind/B].pb({x,i});
        block_num[i] = ind/B;
        ind++;
    }

    rep(b,n/B+1){
        upd_block(b);
    }
}

void init(int n_, int L_, int X[])
{
    n = n_;
    L = L_;
    a = block_num = cams = mx_point = vector<int>(n);
    rep(i,n) a[i] = X[i];
    rep(i,n) st.insert({a[i],i});
    build();
}

int upds = 0;

int update(int i, int v)
{
    upds++;
    if(upds%B == 0){
        build();
    }

    int b = block_num[i];

    {
        auto &curr = blocks[b];
        pii px = {a[i],i};
        curr.erase(find(all(curr),px));
        upd_block(b);
    }

    st.erase({a[i],i});
    a[i] = v;
    st.insert({a[i],i});
    auto it = st.find({a[i],i});

    if(next(it) != st.end()){
        b = block_num[next(it)->ss];
    }
    else if(it != st.begin()){
        b = block_num[prev(it)->ss];
    }
    else{
        b = 0;
    }

    block_num[i] = b;

    {
        auto &curr = blocks[b];
        pii px = {a[i],i};
        curr.insert(upper_bound(all(curr),px),px);
        upd_block(b);
    }

    int mx_reach = -1;
    int ans = 0;

    rep(b,n/B+1){
        auto &curr = blocks[b];
        pii px = {mx_reach+1,-1};
        auto it = upper_bound(all(curr),px);
        if(it == curr.end()){
            conts;
        }

        int j = it->second;
        ans += cams[j];
        mx_reach = mx_point[j];
    }  

    return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6492 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6492 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
4 Correct 1 ms 6492 KB Output is correct
5 Correct 1 ms 6492 KB Output is correct
6 Correct 1 ms 6492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6492 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
4 Correct 1 ms 6492 KB Output is correct
5 Correct 1 ms 6492 KB Output is correct
6 Correct 1 ms 6492 KB Output is correct
7 Correct 165 ms 10040 KB Output is correct
8 Correct 186 ms 10320 KB Output is correct
9 Correct 264 ms 12368 KB Output is correct
10 Correct 264 ms 12372 KB Output is correct
11 Correct 237 ms 12448 KB Output is correct
12 Correct 553 ms 12460 KB Output is correct
13 Correct 243 ms 12444 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6492 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
4 Correct 1 ms 6492 KB Output is correct
5 Correct 1 ms 6492 KB Output is correct
6 Correct 1 ms 6492 KB Output is correct
7 Correct 165 ms 10040 KB Output is correct
8 Correct 186 ms 10320 KB Output is correct
9 Correct 264 ms 12368 KB Output is correct
10 Correct 264 ms 12372 KB Output is correct
11 Correct 237 ms 12448 KB Output is correct
12 Correct 553 ms 12460 KB Output is correct
13 Correct 243 ms 12444 KB Output is correct
14 Correct 273 ms 10632 KB Output is correct
15 Correct 282 ms 10328 KB Output is correct
16 Correct 809 ms 12428 KB Output is correct
17 Correct 884 ms 14152 KB Output is correct
18 Correct 932 ms 13908 KB Output is correct
19 Correct 433 ms 13908 KB Output is correct
20 Correct 878 ms 13916 KB Output is correct
21 Correct 878 ms 13916 KB Output is correct
22 Correct 441 ms 13908 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6492 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
4 Correct 1 ms 6492 KB Output is correct
5 Correct 1 ms 6492 KB Output is correct
6 Correct 1 ms 6492 KB Output is correct
7 Correct 165 ms 10040 KB Output is correct
8 Correct 186 ms 10320 KB Output is correct
9 Correct 264 ms 12368 KB Output is correct
10 Correct 264 ms 12372 KB Output is correct
11 Correct 237 ms 12448 KB Output is correct
12 Correct 553 ms 12460 KB Output is correct
13 Correct 243 ms 12444 KB Output is correct
14 Correct 273 ms 10632 KB Output is correct
15 Correct 282 ms 10328 KB Output is correct
16 Correct 809 ms 12428 KB Output is correct
17 Correct 884 ms 14152 KB Output is correct
18 Correct 932 ms 13908 KB Output is correct
19 Correct 433 ms 13908 KB Output is correct
20 Correct 878 ms 13916 KB Output is correct
21 Correct 878 ms 13916 KB Output is correct
22 Correct 441 ms 13908 KB Output is correct
23 Correct 2041 ms 23804 KB Output is correct
24 Correct 2256 ms 23800 KB Output is correct
25 Correct 1561 ms 23856 KB Output is correct
26 Correct 1797 ms 23668 KB Output is correct
27 Correct 1813 ms 23804 KB Output is correct
28 Correct 771 ms 13652 KB Output is correct
29 Correct 747 ms 13404 KB Output is correct
30 Correct 784 ms 13212 KB Output is correct
31 Correct 746 ms 13236 KB Output is correct
32 Correct 1671 ms 23816 KB Output is correct
33 Correct 1707 ms 24004 KB Output is correct
34 Correct 1842 ms 23812 KB Output is correct
35 Correct 1615 ms 23812 KB Output is correct
36 Correct 1693 ms 23796 KB Output is correct
37 Correct 2820 ms 25020 KB Output is correct
38 Correct 1725 ms 23808 KB Output is correct
39 Correct 1524 ms 23812 KB Output is correct
40 Correct 1681 ms 23632 KB Output is correct
41 Correct 3369 ms 23816 KB Output is correct
42 Correct 3437 ms 23808 KB Output is correct