답안 #970386

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
970386 2024-04-26T13:14:31 Z maksim1744 디지털 회로 (IOI22_circuit) C++17
100 / 100
698 ms 35260 KB
/*
    author:  Maksim1744
    created: 26.04.2024 15:57:25
*/

#include "bits/stdc++.h"

using namespace std;

using ll = long long;
using ld = long double;

#define mp   make_pair
#define pb   push_back
#define eb   emplace_back

#define sum(a)     ( accumulate ((a).begin(), (a).end(), 0ll))
#define mine(a)    (*min_element((a).begin(), (a).end()))
#define maxe(a)    (*max_element((a).begin(), (a).end()))
#define mini(a)    ( min_element((a).begin(), (a).end()) - (a).begin())
#define maxi(a)    ( max_element((a).begin(), (a).end()) - (a).begin())
#define lowb(a, x) ( lower_bound((a).begin(), (a).end(), (x)) - (a).begin())
#define uppb(a, x) ( upper_bound((a).begin(), (a).end(), (x)) - (a).begin())

template<typename T>             vector<T>& operator--            (vector<T> &v){for (auto& i : v) --i;            return  v;}
template<typename T>             vector<T>& operator++            (vector<T> &v){for (auto& i : v) ++i;            return  v;}
template<typename T>             istream& operator>>(istream& is,  vector<T> &v){for (auto& i : v) is >> i;        return is;}
template<typename T>             ostream& operator<<(ostream& os,  vector<T>  v){for (auto& i : v) os << i << ' '; return os;}
template<typename T, typename U> pair<T,U>& operator--           (pair<T, U> &p){--p.first; --p.second;            return  p;}
template<typename T, typename U> pair<T,U>& operator++           (pair<T, U> &p){++p.first; ++p.second;            return  p;}
template<typename T, typename U> istream& operator>>(istream& is, pair<T, U> &p){is >> p.first >> p.second;        return is;}
template<typename T, typename U> ostream& operator<<(ostream& os, pair<T, U>  p){os << p.first << ' ' << p.second; return os;}
template<typename T, typename U> pair<T,U> operator-(pair<T,U> a, pair<T,U> b){return mp(a.first-b.first, a.second-b.second);}
template<typename T, typename U> pair<T,U> operator+(pair<T,U> a, pair<T,U> b){return mp(a.first+b.first, a.second+b.second);}
template<typename T, typename U> void umin(T& a, U b){if (a > b) a = b;}
template<typename T, typename U> void umax(T& a, U b){if (a < b) a = b;}

#ifdef HOME
#define SHOW_COLORS
#include "/mnt/c/Libs/tools/print.cpp"
#else
#define show(...) void(0)
#define debugf(fun)   fun
#define debugv(var)   var
#define mclock    void(0)
#define shows     void(0)
#define debug  if (false)
#define OSTREAM(...)    ;
#define OSTREAM0(...)   ;
#endif

namespace mint_ns {
template<auto P>
struct Modular {
    using value_type = decltype(P);
    value_type value;

    Modular(long long k = 0) : value(norm(k)) {}

    friend Modular<P>& operator += (      Modular<P>& n, const Modular<P>& m) { n.value += m.value; if (n.value >= P) n.value -= P; return n; }
    friend Modular<P>  operator +  (const Modular<P>& n, const Modular<P>& m) { Modular<P> r = n; return r += m; }

    friend Modular<P>& operator -= (      Modular<P>& n, const Modular<P>& m) { n.value -= m.value; if (n.value < 0)  n.value += P; return n; }
    friend Modular<P>  operator -  (const Modular<P>& n, const Modular<P>& m) { Modular<P> r = n; return r -= m; }
    friend Modular<P>  operator -  (const Modular<P>& n)                      { return Modular<P>(-n.value); }

    friend Modular<P>& operator *= (      Modular<P>& n, const Modular<P>& m) { n.value = n.value * 1ll * m.value % P; return n; }
    friend Modular<P>  operator *  (const Modular<P>& n, const Modular<P>& m) { Modular<P> r = n; return r *= m; }

    friend Modular<P>& operator /= (      Modular<P>& n, const Modular<P>& m) { return n *= m.inv(); }
    friend Modular<P>  operator /  (const Modular<P>& n, const Modular<P>& m) { Modular<P> r = n; return r /= m; }

    Modular<P>& operator ++ (   ) { return *this += 1; }
    Modular<P>& operator -- (   ) { return *this -= 1; }
    Modular<P>  operator ++ (int) { Modular<P> r = *this; *this += 1; return r; }
    Modular<P>  operator -- (int) { Modular<P> r = *this; *this -= 1; return r; }

    friend bool operator == (const Modular<P>& n, const Modular<P>& m) { return n.value == m.value; }
    friend bool operator != (const Modular<P>& n, const Modular<P>& m) { return n.value != m.value; }

    explicit    operator       int() const { return value; }
    explicit    operator      bool() const { return value; }
    explicit    operator long long() const { return value; }

    constexpr static value_type mod()      { return     P; }

    value_type norm(long long k) {
        if (!(-P <= k && k < P)) k %= P;
        if (k < 0) k += P;
        return k;
    }

    Modular<P> inv() const {
        value_type a = value, b = P, x = 0, y = 1;
        while (a != 0) { value_type k = b / a; b -= k * a; x -= k * y; swap(a, b); swap(x, y); }
        return Modular<P>(x);
    }
};
template<auto P> Modular<P> pow(Modular<P> m, long long p) {
    Modular<P> r(1);
    while (p) {
        if (p & 1) r *= m;
        m *= m;
        p >>= 1;
    }
    return r;
}

template<auto P> ostream& operator << (ostream& o, const Modular<P>& m) { return o << m.value; }
template<auto P> istream& operator >> (istream& i,       Modular<P>& m) { long long k; i >> k; m.value = m.norm(k); return i; }
template<auto P> string   to_string(const Modular<P>& m) { return to_string(m.value); }

using Mint = Modular<(int)1e9 + 2022>;
// using Mint = Modular<998244353>;
// using Mint = long double;

vector<Mint> f, fi;
void init_C(int n) {
    f.assign(n, 1); fi.assign(n, 1);
    for (int i = 2; i < n; ++i) f[i] = f[i - 1] * i;
    fi.back() = Mint(1) / f.back();
    for (int i = n - 2; i >= 0; --i) fi[i] = fi[i + 1] * (i + 1);
}
Mint C(int n, int k) {
    if (k < 0 || k > n) return 0;
    else return f[n] * fi[k] * fi[n - k];
}
}
using namespace mint_ns;

namespace segtree {

// This implementation is disgusting, but it seems to work and do it faster than previous version.

template<typename Item>
Item tree_merge(const Item& a, const Item& b) {
    Item i;
    i.update(a, b);
    return i;
}

template<typename Item, bool lazy>
struct Pusher {};

template<typename Item>
struct Pusher<Item, false> {
    void push(const vector<Item>&, int, int, int) {}
    Item ask_on_segment(const vector<Item>& tree, int n, int l, int r) {
        l |= n;
        r |= n;
        Item resl, resr;
        while (l <= r) {
            if (l & 1) {
                resl = tree_merge(resl, tree[l]);
                ++l;
            }
            if (!(r & 1)) {
                resr = tree_merge(tree[r], resr);
                --r;
            }
            l >>= 1;
            r >>= 1;
        }
        return tree_merge(resl, resr);
    }
    void push_point(const vector<Item>&, int, int) {}

    template<typename P>
    int lower_bound(const vector<Item>& tree, int n, int l, P p) {
        Item cur;
        if (p(cur)) return l - 1;
        l |= n;
        int r = n | (n - 1);
        // carefully go up
        while (true) {
            if (p(tree_merge(cur, tree[l]))) {
                break;
            }
            if (l == r) return n;
            if (l & 1) {
                cur = tree_merge(cur, tree[l]);
                ++l;
            }
            l >>= 1;
            r >>= 1;
        }

        // usual descent from l
        while (l < n) {
            if (p(tree_merge(cur, tree[l * 2]))) {
                l = l * 2;
            } else {
                cur = tree_merge(cur, tree[l * 2]);
                l = l * 2 + 1;
            }
        }
        return (l ^ n);
    }

    template<typename P>
    int lower_bound_rev(const vector<Item>& tree, int n, int r, P p) {
        Item cur;
        if (p(cur)) return r + 1;
        r |= n;
        int l = n;
        // carefully go up
        while (true) {
            if (p(tree_merge(tree[r], cur))) {
                break;
            }
            if (l == r) return -1;
            if (!(r & 1)) {
                cur = tree_merge(tree[r], cur);
                --r;
            }
            l >>= 1;
            r >>= 1;
        }

        // usual descent from r
        while (r < n) {
            if (p(tree_merge(tree[r * 2 + 1], cur))) {
                r = r * 2 + 1;
            } else {
                cur = tree_merge(tree[r * 2 + 1], cur);
                r = r * 2;
            }
        }
        return (r ^ n);
    }
};

template<typename Item>
struct Pusher<Item, true> {
    void push(vector<Item>& tree, int ind, int l, int r) {
        tree[ind].push(tree[ind * 2], tree[ind * 2 + 1], l, r);
    }

    Item ask_on_segment(vector<Item>& tree, int n, int l, int r) {
        int vl = 0, vr = n - 1;
        int i = 1;
        Item result;
        while (vl != vr) {
            int m = (vl + vr) / 2;
            if (l > m) {
                push(tree, i, vl, vr);
                i = i * 2 + 1;
                vl = m + 1;
            } else if (r <= m) {
                push(tree, i, vl, vr);
                i = i * 2;
                vr = m;
            } else {
                break;
            }
        }
        if (l == vl && r == vr) {
            return tree[i];
        }
        push(tree, i, vl, vr);
        // left
        {
            int ind = i * 2;
            int L = vl, R = (vl + vr) / 2;
            while (l != L) {
                int m = (L + R) / 2;
                push(tree, ind, L, R);
                if (l <= m) {
                    result = tree_merge(tree[ind * 2 + 1], result);
                    ind *= 2;
                    R = m;
                } else {
                    ind = ind * 2 + 1;
                    L = m + 1;
                }
            }
            result = tree_merge(tree[ind], result);
        }
        // right
        {
            int ind = i * 2 + 1;
            int L = (vl + vr) / 2 + 1, R = vr;
            while (r != R) {
                int m = (L + R) / 2;
                push(tree, ind, L, R);
                if (r > m) {
                    result = tree_merge(result, tree[ind * 2]);
                    ind = ind * 2 + 1;
                    L = m + 1;
                } else {
                    ind = ind * 2;
                    R = m;
                }
            }
            result = tree_merge(result, tree[ind]);
        }
        return result;
    }

    void push_point(vector<Item>& tree, int n, int ind) {
        int l = 0, r = n - 1;
        int i = 1;
        while (l != r) {
            push(tree, i, l, r);
            int m = (l + r) / 2;
            if (ind <= m) {
                r = m;
                i *= 2;
            } else {
                l = m + 1;
                i = i * 2 + 1;
            }
        }
    }

    template<typename P>
    pair<int, Item> _lower_bound(vector<Item>& tree, int l, P p, Item cur, int i, int vl, int vr) {
        if (vl == vr) {
            if (p(tree_merge(cur, tree[i]))) {
                return {vl, tree[i]};
            } else {
                return {vl + 1, tree[i]};
            }
        }

        push(tree, i, vl, vr);
        int m = (vl + vr) / 2;
        if (l > m) {
            return _lower_bound(tree, l, p, cur, i * 2 + 1, m + 1, vr);
        } else if (l <= vl) {
            if (!p(tree_merge(cur, tree[i]))) {
                return {vr + 1, tree_merge(cur, tree[i])};
            }
            if (p(tree_merge(cur, tree[i * 2]))) {
                return _lower_bound(tree, l, p, cur, i * 2, vl, m);
            } else {
                return _lower_bound(tree, l, p, tree_merge(cur, tree[i * 2]), i * 2 + 1, m + 1, vr);
            }
        } else {
            auto [ind, it] = _lower_bound(tree, l, p, cur, i * 2, vl, m);
            if (ind <= m) return {ind, it};
            return _lower_bound(tree, l, p, it, i * 2 + 1, m + 1, vr);
        }
    }

    template<typename P>
    int lower_bound(vector<Item>& tree, int n, int l, P p) {
        Item cur;
        if (p(cur)) return l - 1;
        return _lower_bound(tree, l, p, cur, 1, 0, n - 1).first;
    }

    template<typename P>
    pair<int, Item> _lower_bound_rev(vector<Item>& tree, int r, P p, Item cur, int i, int vl, int vr) {
        if (vl == vr) {
            if (p(tree_merge(tree[i], cur))) {
                return {vl, tree[i]};
            } else {
                return {vl - 1, tree[i]};
            }
        }

        push(tree, i, vl, vr);
        int m = (vl + vr) / 2;
        if (r <= m) {
            return _lower_bound_rev(tree, r, p, cur, i * 2, vl, m);
        } else if (r >= vr) {
            if (!p(tree_merge(tree[i], cur))) {
                return {vl - 1, tree_merge(cur, tree[i])};
            }
            if (p(tree_merge(tree[i * 2 + 1], cur))) {
                return _lower_bound_rev(tree, r, p, cur, i * 2 + 1, m + 1, vr);
            } else {
                return _lower_bound_rev(tree, r, p, tree_merge(tree[i * 2 + 1], cur), i * 2, vl, m);
            }
        } else {
            auto [ind, it] = _lower_bound_rev(tree, r, p, cur, i * 2 + 1, m + 1, vr);
            if (ind > m) return {ind, it};
            return _lower_bound_rev(tree, r, p, it, i * 2, vl, m);
        }
    }

    template<typename P>
    int lower_bound_rev(vector<Item>& tree, int n, int r, P p) {
        Item cur;
        if (p(cur)) return r + 1;
        return _lower_bound_rev(tree, r, p, cur, 1, 0, n - 1).first;
    }
};

template<typename Item, bool lazy = false>
struct Segtree {
    vector<Item> tree;
    Pusher<Item, lazy> pusher;
    int n;
    int n0;

    Segtree(int n = 0) {
        build(n);
    }

    template<typename U>
    Segtree(const vector<U>& v) {
        build(v);
    }

    void build(int n) {
        this->n0 = n;
        while (n & (n - 1)) ++n;
        this->n = n;
        tree.assign(n * 2, {});
    }

    template<typename U>
    void build(const vector<U>& v) {
        build(v.size());
        for (int i = 0; i < v.size(); ++i) {
            tree[n | i].init(v[i], i);
        }
        build();
    }

    void build() {
        for (int i = n - 1; i >= 1; --i) {
            tree[i].update(tree[i * 2], tree[i * 2 + 1]);
        }
    }

    void push(int ind, int l, int r) {
        pusher.push(tree, ind, l, r);
    }

    template<typename T>
    void set(int ind, const T& t) {
        pusher.push_point(tree, n, ind);
        ind |= n;
        tree[ind].init(t, ind ^ n);
        ind >>= 1;
        while (ind) {
            tree[ind].update(tree[ind * 2], tree[ind * 2 + 1]);
            ind >>= 1;
        }
    }

    template<typename T>
    void update(int ind, const T& t) {
        pusher.push_point(tree, n, ind);
        ind |= n;
        tree[ind].update(t, ind ^ n);
        ind >>= 1;
        while (ind) {
            tree[ind].update(tree[ind * 2], tree[ind * 2 + 1]);
            ind >>= 1;
        }
    }

    Item& ith(int ind) {
        static_assert(!lazy, "don't use this method with lazy propagation, unless you're sure you need it");
        return tree[ind | n];
    }

    const Item& root() const {
        return tree[1];
    }

    Item ask(int l, int r) {
        l = max(l, 0);
        r = min(r, n - 1);
        if (l > r) return {};
        return pusher.ask_on_segment(tree, n, l, r);
    }

    template<typename T>
    void modify(int l, int r, const T& t) {
        static_assert(lazy, "lazy must be set to true to use this function");
        l = max(l, 0);
        r = min(r, n - 1);
        if (l > r) return;
        int vl = 0, vr = n - 1;
        int i = 1;
        while (vl != vr) {
            int m = (vl + vr) / 2;
            if (l > m) {
                push(i, vl, vr);
                i = i * 2 + 1;
                vl = m + 1;
            } else if (r <= m) {
                push(i, vl, vr);
                i = i * 2;
                vr = m;
            } else {
                break;
            }
        }
        if (l == vl && r == vr) {
            tree[i].modify(t, l, r);
        } else {
            push(i, vl, vr);
            // left
            {
                int ind = i * 2;
                int L = vl, R = (vl + vr) / 2;
                while (l != L) {
                    int m = (L + R) / 2;
                    push(ind, L, R);
                    if (l <= m) {
                        tree[ind * 2 + 1].modify(t, m + 1, R);
                        ind *= 2;
                        R = m;
                    } else {
                        ind = ind * 2 + 1;
                        L = m + 1;
                    }
                }
                tree[ind].modify(t, L, R);
                ind >>= 1;
                while (ind != i) {
                    tree[ind].update(tree[ind * 2], tree[ind * 2 + 1]);
                    ind >>= 1;
                }
            }
            // right
            {
                int ind = i * 2 + 1;
                int L = (vl + vr) / 2 + 1, R = vr;
                while (r != R) {
                    int m = (L + R) / 2;
                    push(ind, L, R);
                    if (r > m) {
                        tree[ind * 2].modify(t, L, m);
                        ind = ind * 2 + 1;
                        L = m + 1;
                    } else {
                        ind = ind * 2;
                        R = m;
                    }
                }
                tree[ind].modify(t, L, R);
                ind >>= 1;
                while (ind != i) {
                    tree[ind].update(tree[ind * 2], tree[ind * 2 + 1]);
                    ind >>= 1;
                }
            }
            tree[i].update(tree[i * 2], tree[i * 2 + 1]);
        }
        i >>= 1;
        while (i) {
            tree[i].update(tree[i * 2], tree[i * 2 + 1]);
            i >>= 1;
        }
    }

    // first index r such that p(tree.ask(l, r)) == true
    // if p() is true for empty item, return l-1
    // if p() is never true, returns n
    template<typename P>
    int lower_bound(int l, P p) {
        l = max(l, 0);
        if (l >= n0) return n0;
        return min(n0, pusher.lower_bound(tree, n, l, p));
    }

    // similarly to lower_bound, returns first (largest) l such that p(tree.ask(l, r)) == true
    template<typename P>
    int lower_bound_rev(int r, P p) {
        r = min(r, n0 - 1);
        if (r < 0) return -1;
        return pusher.lower_bound_rev(tree, n, r, p);
    }
};

}
using segtree::Segtree;

struct Item {
    Mint sm = 0;
    Mint enabled_sm = 0;
    int mod = 0;

    template<typename T>
    void init(const T& t, int ind) {
        sm = t;
        enabled_sm = 0;
        mod = 0;
    }

    void update(const Item& a, const Item& b) {
        sm = a.sm + b.sm;
        enabled_sm = a.enabled_sm + b.enabled_sm;
    }

    //// similar to init, but more convenient for doing a[i] += x, implement only if needed
    // template<typename T>
    // void update(const T& t, int ind) {}

    // apply here, save for children
    template<typename T>
    void modify(const T& m, int l, int r) {
        if (!m) return;
        mod ^= 1;
        enabled_sm = sm - enabled_sm;
    }

    void push(Item& a, Item& b, int l, int r) {
        if (mod) {
            int m = (l + r) / 2;
            a.modify(mod, l, m);
            b.modify(mod, m + 1, r);
            mod = 0;
        }
    }
};

template<class Fun>
class y_combinator_result {
    Fun fun_;
public:
    template<class T>
    explicit y_combinator_result(T &&fun): fun_(std::forward<T>(fun)) {}

    template<class ...Args>
    decltype(auto) operator()(Args &&...args) {
        return fun_(std::ref(*this), std::forward<Args>(args)...);
    }
};
template<class Fun>
decltype(auto) y_combinator(Fun &&fun) {
    return y_combinator_result<std::decay_t<Fun>>(std::forward<Fun>(fun));
}
// auto gcd = std::y_combinator([](auto gcd, int a, int b) -> int {
//     return b == 0 ? a : gcd(b, a % b);
// });

Segtree<Item, true> tree;
int n;

void init(int N, int m, std::vector<int> P, std::vector<int> A) {
    n = N;
    vector<vector<int>> g(n + m);
    for (int i = 0; i < P.size(); ++i) {
        if (P[i] != -1)
            g[P[i]].pb(i);
    }
    vector<Mint> prod(n + m, 1);
    y_combinator([&](auto dfs, int v) -> void {
        prod[v] = (v < n ? g[v].size() : 1);
        for (int k : g[v]) {
            dfs(k);
            prod[v] *= prod[k];
        }
    })(0);
    vector<Mint> coef(m, 0);
    show(prod);
    y_combinator([&](auto dfs, int v, Mint p) -> void {
        if (v >= n)
            coef[v - n] = p;
        vector<Mint> pref, suf;
        for (int k : g[v]) {
            pref.pb(prod[k]);
            suf.pb(prod[k]);
        }
        for (int i = 1; i < pref.size(); ++i)
            pref[i] *= pref[i - 1];
        for (int i = (int)suf.size() - 2; i >= 0; --i)
            suf[i] *= suf[i + 1];
        for (int i = 0; i < g[v].size(); ++i) {
            Mint here = p;
            if (i) here *= pref[i - 1];
            if (i + 1 < g[v].size()) here *= suf[i + 1];
            dfs(g[v][i], here);
        }
    })(0, 1);
    show(coef);
    tree = Segtree<Item, true>(coef);
    for (int i = 0; i < m; ++i) {
        if (A[i])
            tree.modify(i, i, 1);
    }
}

int count_ways(int l, int r) {
    tree.modify(l - n, r - n, 1);
    return (int)tree.root().enabled_sm;
}

#ifdef HOUSE
int main() {
    ios_base::sync_with_stdio(false); cin.tie(NULL);

    int n, m, q;
    cin >> n >> m >> q;
    vector<int> p(n + m), a(m);
    cin >> p >> a;
    init(n, m, p, a);
    while (q--) {
        int l, r;
        cin >> l >> r;
        cout << count_ways(l, r) << '\n';
    }

    return 0;
}
#endif

Compilation message

circuit.cpp: In function 'void init(int, int, std::vector<int>, std::vector<int>)':
circuit.cpp:641:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  641 |     for (int i = 0; i < P.size(); ++i) {
      |                     ~~^~~~~~~~~~
circuit.cpp: In lambda function:
circuit.cpp:663:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<mint_ns::Modular<1000002022> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  663 |         for (int i = 1; i < pref.size(); ++i)
      |                         ~~^~~~~~~~~~~~~
circuit.cpp: In instantiation of 'init(int, int, std::vector<int>, std::vector<int>)::<lambda(auto:24, int, mint_ns::Mint)> [with auto:24 = std::reference_wrapper<y_combinator_result<init(int, int, std::vector<int>, std::vector<int>)::<lambda(auto:24, int, mint_ns::Mint)> > >; mint_ns::Mint = mint_ns::Modular<1000002022>]':
circuit.cpp:624:20:   required from 'decltype(auto) y_combinator_result<Fun>::operator()(Args&& ...) [with Args = {int, int}; Fun = init(int, int, std::vector<int>, std::vector<int>)::<lambda(auto:24, int, mint_ns::Mint)>]'
circuit.cpp:673:12:   required from here
circuit.cpp:663:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<mint_ns::Modular<1000002022> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
circuit.cpp:667:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  667 |         for (int i = 0; i < g[v].size(); ++i) {
      |                         ~~^~~~~~~~~~~~~
circuit.cpp:670:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  670 |             if (i + 1 < g[v].size()) here *= suf[i + 1];
      |                 ~~~~~~^~~~~~~~~~~~~
circuit.cpp: In instantiation of 'void segtree::Segtree<Item, lazy>::build(const std::vector<U>&) [with U = mint_ns::Modular<1000002022>; Item = Item; bool lazy = true]':
circuit.cpp:404:14:   required from 'segtree::Segtree<Item, lazy>::Segtree(const std::vector<U>&) [with U = mint_ns::Modular<1000002022>; Item = Item; bool lazy = true]'
circuit.cpp:675:36:   required from here
circuit.cpp:417:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<mint_ns::Modular<1000002022> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  417 |         for (int i = 0; i < v.size(); ++i) {
      |                         ~~^~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 1 ms 440 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 1 ms 344 KB Output is correct
7 Correct 0 ms 344 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 1 ms 344 KB Output is correct
7 Correct 1 ms 344 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 2 ms 344 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
12 Correct 1 ms 344 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 1 ms 440 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 1 ms 344 KB Output is correct
7 Correct 0 ms 344 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 0 ms 344 KB Output is correct
10 Correct 0 ms 344 KB Output is correct
11 Correct 1 ms 344 KB Output is correct
12 Correct 1 ms 344 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 1 ms 344 KB Output is correct
15 Correct 1 ms 344 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 2 ms 344 KB Output is correct
18 Correct 1 ms 600 KB Output is correct
19 Correct 1 ms 600 KB Output is correct
20 Correct 1 ms 344 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 1 ms 344 KB Output is correct
23 Correct 1 ms 344 KB Output is correct
24 Correct 1 ms 344 KB Output is correct
25 Correct 1 ms 344 KB Output is correct
26 Correct 1 ms 344 KB Output is correct
27 Correct 1 ms 344 KB Output is correct
28 Correct 1 ms 344 KB Output is correct
29 Correct 1 ms 344 KB Output is correct
30 Correct 1 ms 344 KB Output is correct
31 Correct 1 ms 600 KB Output is correct
32 Correct 1 ms 344 KB Output is correct
33 Correct 1 ms 344 KB Output is correct
34 Correct 1 ms 344 KB Output is correct
35 Correct 1 ms 344 KB Output is correct
36 Correct 1 ms 600 KB Output is correct
37 Correct 1 ms 600 KB Output is correct
38 Correct 1 ms 600 KB Output is correct
39 Correct 1 ms 344 KB Output is correct
40 Correct 1 ms 344 KB Output is correct
41 Correct 1 ms 344 KB Output is correct
42 Correct 1 ms 596 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 413 ms 4928 KB Output is correct
2 Correct 558 ms 9400 KB Output is correct
3 Correct 598 ms 9388 KB Output is correct
4 Correct 601 ms 9400 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 413 ms 4928 KB Output is correct
2 Correct 558 ms 9400 KB Output is correct
3 Correct 598 ms 9388 KB Output is correct
4 Correct 601 ms 9400 KB Output is correct
5 Correct 518 ms 4928 KB Output is correct
6 Correct 634 ms 9400 KB Output is correct
7 Correct 581 ms 9384 KB Output is correct
8 Correct 580 ms 9412 KB Output is correct
9 Correct 289 ms 688 KB Output is correct
10 Correct 596 ms 856 KB Output is correct
11 Correct 552 ms 856 KB Output is correct
12 Correct 560 ms 856 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 1 ms 344 KB Output is correct
7 Correct 1 ms 344 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 2 ms 344 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
12 Correct 1 ms 344 KB Output is correct
13 Correct 413 ms 4928 KB Output is correct
14 Correct 558 ms 9400 KB Output is correct
15 Correct 598 ms 9388 KB Output is correct
16 Correct 601 ms 9400 KB Output is correct
17 Correct 518 ms 4928 KB Output is correct
18 Correct 634 ms 9400 KB Output is correct
19 Correct 581 ms 9384 KB Output is correct
20 Correct 580 ms 9412 KB Output is correct
21 Correct 289 ms 688 KB Output is correct
22 Correct 596 ms 856 KB Output is correct
23 Correct 552 ms 856 KB Output is correct
24 Correct 560 ms 856 KB Output is correct
25 Correct 685 ms 14532 KB Output is correct
26 Correct 652 ms 14864 KB Output is correct
27 Correct 676 ms 14652 KB Output is correct
28 Correct 508 ms 14852 KB Output is correct
29 Correct 698 ms 33592 KB Output is correct
30 Correct 661 ms 33696 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 1 ms 440 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 1 ms 344 KB Output is correct
7 Correct 0 ms 344 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 0 ms 344 KB Output is correct
10 Correct 0 ms 344 KB Output is correct
11 Correct 1 ms 344 KB Output is correct
12 Correct 1 ms 344 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 1 ms 344 KB Output is correct
15 Correct 1 ms 344 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 2 ms 344 KB Output is correct
18 Correct 1 ms 600 KB Output is correct
19 Correct 1 ms 600 KB Output is correct
20 Correct 1 ms 344 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 1 ms 344 KB Output is correct
23 Correct 1 ms 344 KB Output is correct
24 Correct 1 ms 344 KB Output is correct
25 Correct 1 ms 344 KB Output is correct
26 Correct 1 ms 344 KB Output is correct
27 Correct 1 ms 344 KB Output is correct
28 Correct 1 ms 344 KB Output is correct
29 Correct 1 ms 344 KB Output is correct
30 Correct 1 ms 344 KB Output is correct
31 Correct 1 ms 600 KB Output is correct
32 Correct 1 ms 344 KB Output is correct
33 Correct 1 ms 344 KB Output is correct
34 Correct 1 ms 344 KB Output is correct
35 Correct 1 ms 344 KB Output is correct
36 Correct 1 ms 600 KB Output is correct
37 Correct 1 ms 600 KB Output is correct
38 Correct 1 ms 600 KB Output is correct
39 Correct 1 ms 344 KB Output is correct
40 Correct 1 ms 344 KB Output is correct
41 Correct 1 ms 344 KB Output is correct
42 Correct 1 ms 596 KB Output is correct
43 Correct 445 ms 856 KB Output is correct
44 Correct 537 ms 856 KB Output is correct
45 Correct 599 ms 856 KB Output is correct
46 Correct 571 ms 1112 KB Output is correct
47 Correct 578 ms 1112 KB Output is correct
48 Correct 548 ms 1112 KB Output is correct
49 Correct 548 ms 1112 KB Output is correct
50 Correct 569 ms 1112 KB Output is correct
51 Correct 538 ms 856 KB Output is correct
52 Correct 568 ms 856 KB Output is correct
53 Correct 497 ms 1624 KB Output is correct
54 Correct 564 ms 1112 KB Output is correct
55 Correct 559 ms 856 KB Output is correct
56 Correct 522 ms 856 KB Output is correct
57 Correct 554 ms 856 KB Output is correct
58 Correct 593 ms 1880 KB Output is correct
59 Correct 534 ms 2136 KB Output is correct
60 Correct 550 ms 2136 KB Output is correct
61 Correct 546 ms 1112 KB Output is correct
62 Correct 558 ms 600 KB Output is correct
63 Correct 591 ms 784 KB Output is correct
64 Correct 598 ms 856 KB Output is correct
65 Correct 261 ms 852 KB Output is correct
66 Correct 553 ms 856 KB Output is correct
67 Correct 547 ms 852 KB Output is correct
68 Correct 507 ms 856 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 1 ms 440 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 1 ms 344 KB Output is correct
7 Correct 0 ms 344 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 0 ms 344 KB Output is correct
10 Correct 0 ms 344 KB Output is correct
11 Correct 1 ms 344 KB Output is correct
12 Correct 1 ms 344 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 1 ms 344 KB Output is correct
15 Correct 1 ms 344 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 2 ms 344 KB Output is correct
18 Correct 1 ms 600 KB Output is correct
19 Correct 1 ms 600 KB Output is correct
20 Correct 1 ms 344 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 1 ms 344 KB Output is correct
23 Correct 1 ms 344 KB Output is correct
24 Correct 1 ms 344 KB Output is correct
25 Correct 1 ms 344 KB Output is correct
26 Correct 1 ms 344 KB Output is correct
27 Correct 1 ms 344 KB Output is correct
28 Correct 1 ms 344 KB Output is correct
29 Correct 1 ms 344 KB Output is correct
30 Correct 1 ms 344 KB Output is correct
31 Correct 1 ms 600 KB Output is correct
32 Correct 1 ms 344 KB Output is correct
33 Correct 1 ms 344 KB Output is correct
34 Correct 1 ms 344 KB Output is correct
35 Correct 1 ms 344 KB Output is correct
36 Correct 1 ms 600 KB Output is correct
37 Correct 1 ms 600 KB Output is correct
38 Correct 1 ms 600 KB Output is correct
39 Correct 1 ms 344 KB Output is correct
40 Correct 1 ms 344 KB Output is correct
41 Correct 1 ms 344 KB Output is correct
42 Correct 1 ms 596 KB Output is correct
43 Correct 413 ms 4928 KB Output is correct
44 Correct 558 ms 9400 KB Output is correct
45 Correct 598 ms 9388 KB Output is correct
46 Correct 601 ms 9400 KB Output is correct
47 Correct 518 ms 4928 KB Output is correct
48 Correct 634 ms 9400 KB Output is correct
49 Correct 581 ms 9384 KB Output is correct
50 Correct 580 ms 9412 KB Output is correct
51 Correct 289 ms 688 KB Output is correct
52 Correct 596 ms 856 KB Output is correct
53 Correct 552 ms 856 KB Output is correct
54 Correct 560 ms 856 KB Output is correct
55 Correct 685 ms 14532 KB Output is correct
56 Correct 652 ms 14864 KB Output is correct
57 Correct 676 ms 14652 KB Output is correct
58 Correct 508 ms 14852 KB Output is correct
59 Correct 698 ms 33592 KB Output is correct
60 Correct 661 ms 33696 KB Output is correct
61 Correct 445 ms 856 KB Output is correct
62 Correct 537 ms 856 KB Output is correct
63 Correct 599 ms 856 KB Output is correct
64 Correct 571 ms 1112 KB Output is correct
65 Correct 578 ms 1112 KB Output is correct
66 Correct 548 ms 1112 KB Output is correct
67 Correct 548 ms 1112 KB Output is correct
68 Correct 569 ms 1112 KB Output is correct
69 Correct 538 ms 856 KB Output is correct
70 Correct 568 ms 856 KB Output is correct
71 Correct 497 ms 1624 KB Output is correct
72 Correct 564 ms 1112 KB Output is correct
73 Correct 559 ms 856 KB Output is correct
74 Correct 522 ms 856 KB Output is correct
75 Correct 554 ms 856 KB Output is correct
76 Correct 593 ms 1880 KB Output is correct
77 Correct 534 ms 2136 KB Output is correct
78 Correct 550 ms 2136 KB Output is correct
79 Correct 546 ms 1112 KB Output is correct
80 Correct 558 ms 600 KB Output is correct
81 Correct 591 ms 784 KB Output is correct
82 Correct 598 ms 856 KB Output is correct
83 Correct 261 ms 852 KB Output is correct
84 Correct 553 ms 856 KB Output is correct
85 Correct 547 ms 852 KB Output is correct
86 Correct 507 ms 856 KB Output is correct
87 Correct 1 ms 344 KB Output is correct
88 Correct 405 ms 13652 KB Output is correct
89 Correct 636 ms 9324 KB Output is correct
90 Correct 658 ms 9064 KB Output is correct
91 Correct 623 ms 15160 KB Output is correct
92 Correct 677 ms 14928 KB Output is correct
93 Correct 646 ms 14912 KB Output is correct
94 Correct 683 ms 14920 KB Output is correct
95 Correct 607 ms 14916 KB Output is correct
96 Correct 569 ms 8844 KB Output is correct
97 Correct 636 ms 8676 KB Output is correct
98 Correct 557 ms 28988 KB Output is correct
99 Correct 610 ms 14648 KB Output is correct
100 Correct 638 ms 11752 KB Output is correct
101 Correct 628 ms 10264 KB Output is correct
102 Correct 629 ms 8536 KB Output is correct
103 Correct 687 ms 33616 KB Output is correct
104 Correct 636 ms 35212 KB Output is correct
105 Correct 647 ms 35260 KB Output is correct
106 Correct 618 ms 13608 KB Output is correct
107 Correct 621 ms 9308 KB Output is correct
108 Correct 611 ms 9096 KB Output is correct
109 Correct 628 ms 8644 KB Output is correct