Submission #962715

# Submission time Handle Problem Language Result Execution time Memory
962715 2024-04-14T07:23:39 Z danikoynov Robots (IOI13_robots) C++14
100 / 100
313 ms 64684 KB
#include "robots.h"
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int maxt = 1e6 + 10;
const int maxn = 1e5 + 10;

struct toy
{
    int w, s, idx;

    toy(int _w = 0, int _s = 0, int _idx = 0)
    {
        w = _w;
        s = _s;
    }
} toys[maxt];

bool cmp_w(toy t1, toy  t2)
{
    return t1.w < t2.w;
}

bool cmp_s(toy t1, toy t2)
{
    return t1.s < t2.s;
}

int x[maxn], y[maxn], used[maxt];
int a, b, t;


int cnt[maxn];

struct node
{
    int pos, mx;

    node (int _pos = -1, int _mx = -1)
    {
        pos = _pos;
        mx = _mx;
    }
};

node merge_node(node lf, node rf)
{
    if (lf.mx > rf.mx)
        return lf;
    return rf;
}

node tree[4 * maxt];
void build(int root, int left, int right)
{
    if (left == right)
    {
        tree[root].mx = toys[left].s;
        tree[root].pos = left;
        return;
    }

    int mid = (left + right) / 2;
    build(root * 2, left, mid);
    build(root * 2 + 1, mid + 1, right);

    tree[root] = merge_node(tree[root * 2], tree[root * 2 + 1]);
}

void update(int root, int left, int right, int pivot)
{
    if (left == right)
    {
        tree[root].mx = -1;
        tree[root].pos = left;
        return;
    }

    int mid = (left + right) / 2;
    if (pivot <= mid)
        update(root * 2, left, mid, pivot);
    else
        update(root * 2 + 1, mid + 1, right, pivot);

    tree[root] = merge_node(tree[root * 2], tree[root * 2 + 1]);
}

node query(int root, int left, int right, int qleft, int qright)
{
    if (left > qright || right < qleft)
        return node();

    if (left >= qleft && right <= qright)
        return tree[root];

    int mid = (left + right) / 2;
    return merge_node(query(root * 2, left, mid, qleft, qright),
                      query(root * 2 + 1, mid + 1, right, qleft, qright));
}


int to_x[maxn], stock[maxn];

int par[maxn];

int find_leader(int v)
{
    if (v == par[v])
        return v;
    return (par[v] = find_leader(par[v]));
}

int to_y[maxn];
bool check(int p)
{

    for (int i = 0; i <= a; i ++)
        par[i] = i, stock[i] = p;
    vector < toy > vec;
    for (int i = t - 1; i >= 0; i --)
    {
        int tk = find_leader(to_x[i]);
        int ds = to_x[i];
        while(ds < a && stock[ds] == 0)
          ds ++;

        if (tk == a)
        {
            vec.push_back(toys[i]);
        }
        else
        {

            stock[tk] --;
            if (stock[tk] == 0)
                par[tk] = tk + 1;
        }
    }


    reverse(vec.begin(), vec.end());

    for (int i = 0; i < b; i ++)
        cnt[i] = 0;
    int pivot = 0;
    for (toy cur : vec)
    {
        while(pivot < b && (cur.s >= y[pivot] || cnt[pivot] == p))
            pivot ++;
        if (pivot == b)
            return false;
        cnt[pivot] ++;
    }

    return true;
}
int putaway(int A, int B, int T, int X[], int Y[], int W[], int S[])
{
    a = A;
    b = B;
    t = T;

    for (int i = 0; i < T; i ++)
    {
        toys[i] = toy(W[i], S[i]);
    }

    for (int i = 0; i < a; i ++)
        x[i] = X[i];
    for (int i = 0; i < b; i ++)
        y[i] = Y[i];


    sort(x, x + A);
    sort(y, y + B);
    sort(toys, toys + T, cmp_w);


    for (int i = 0; i < T; i ++)
        toys[i].idx = i;



    sort(toys, toys + T, cmp_s);
    for (int i = 0; i < t; i ++)
    {
        int lf = 0, rf = a - 1;
        while(lf <= rf)
        {
            int mf = (lf + rf) / 2;
            if (x[mf] > toys[i].w)
                rf = mf - 1;
            else
                lf = mf + 1;
        }
        to_x[i] = lf;
    }
    int lf = 1, rf = T;
    while(lf <= rf)
    {

        int mf = (lf + rf) / 2;
        if (check(mf))
            rf = mf - 1;
        else
            lf = mf + 1;
    }

    if (lf > T)
        return - 1;
    return lf;
}
# Verdict Execution time Memory Grader output
1 Correct 10 ms 52316 KB Output is correct
2 Correct 9 ms 52148 KB Output is correct
3 Correct 9 ms 52060 KB Output is correct
4 Correct 9 ms 52060 KB Output is correct
5 Correct 9 ms 52060 KB Output is correct
6 Correct 9 ms 52428 KB Output is correct
7 Correct 10 ms 52060 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 52056 KB Output is correct
2 Correct 10 ms 52204 KB Output is correct
3 Correct 10 ms 52056 KB Output is correct
4 Correct 289 ms 53140 KB Output is correct
5 Correct 237 ms 52372 KB Output is correct
6 Correct 38 ms 52312 KB Output is correct
7 Correct 281 ms 56580 KB Output is correct
8 Correct 298 ms 55492 KB Output is correct
9 Correct 234 ms 56780 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 52256 KB Output is correct
2 Correct 9 ms 52192 KB Output is correct
3 Correct 9 ms 52060 KB Output is correct
4 Correct 9 ms 52144 KB Output is correct
5 Correct 9 ms 52168 KB Output is correct
6 Correct 9 ms 52056 KB Output is correct
7 Correct 9 ms 52060 KB Output is correct
8 Correct 9 ms 52148 KB Output is correct
9 Correct 10 ms 52056 KB Output is correct
10 Correct 10 ms 52220 KB Output is correct
11 Correct 9 ms 52060 KB Output is correct
12 Correct 9 ms 52060 KB Output is correct
13 Correct 9 ms 52060 KB Output is correct
14 Correct 9 ms 52056 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 52060 KB Output is correct
2 Correct 9 ms 52060 KB Output is correct
3 Correct 9 ms 52168 KB Output is correct
4 Correct 9 ms 52060 KB Output is correct
5 Correct 9 ms 52060 KB Output is correct
6 Correct 10 ms 52060 KB Output is correct
7 Correct 9 ms 52060 KB Output is correct
8 Correct 9 ms 52060 KB Output is correct
9 Correct 10 ms 52184 KB Output is correct
10 Correct 13 ms 52060 KB Output is correct
11 Correct 9 ms 52060 KB Output is correct
12 Correct 10 ms 52140 KB Output is correct
13 Correct 10 ms 52056 KB Output is correct
14 Correct 10 ms 52060 KB Output is correct
15 Correct 9 ms 52168 KB Output is correct
16 Correct 14 ms 52316 KB Output is correct
17 Correct 14 ms 52316 KB Output is correct
18 Correct 13 ms 52316 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 52060 KB Output is correct
2 Correct 12 ms 52192 KB Output is correct
3 Correct 9 ms 52060 KB Output is correct
4 Correct 9 ms 52056 KB Output is correct
5 Correct 9 ms 52060 KB Output is correct
6 Correct 9 ms 52060 KB Output is correct
7 Correct 9 ms 52056 KB Output is correct
8 Correct 9 ms 52060 KB Output is correct
9 Correct 9 ms 52056 KB Output is correct
10 Correct 268 ms 53136 KB Output is correct
11 Correct 225 ms 52316 KB Output is correct
12 Correct 39 ms 52556 KB Output is correct
13 Correct 263 ms 55560 KB Output is correct
14 Correct 291 ms 56264 KB Output is correct
15 Correct 9 ms 52060 KB Output is correct
16 Correct 9 ms 52060 KB Output is correct
17 Correct 9 ms 52060 KB Output is correct
18 Correct 9 ms 52060 KB Output is correct
19 Correct 9 ms 52060 KB Output is correct
20 Correct 10 ms 52060 KB Output is correct
21 Correct 13 ms 52316 KB Output is correct
22 Correct 313 ms 64484 KB Output is correct
23 Correct 258 ms 55572 KB Output is correct
24 Correct 213 ms 54028 KB Output is correct
25 Correct 281 ms 55032 KB Output is correct
26 Correct 263 ms 64448 KB Output is correct
27 Correct 298 ms 62852 KB Output is correct
28 Correct 308 ms 63088 KB Output is correct
29 Correct 246 ms 64684 KB Output is correct