Submission #958074

# Submission time Handle Problem Language Result Execution time Memory
958074 2024-04-04T20:35:30 Z shadow_sami Collecting Stamps 3 (JOI20_ho_t3) C++17
100 / 100
107 ms 134012 KB
#include<bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
using namespace std;
typedef long long int ll;
typedef vector<ll> vi;
typedef vector<vector<ll>> vvi;
typedef pair<ll,ll> pi;
typedef map<ll,ll> mi;
typedef long double ld;
typedef vector<ld> vd;
typedef vector<vector<ld>> vvd;
typedef pair<ld,ld> pd;
#define ff first
#define ss second
#define srt(a) sort(a.begin(),a.end());
#define fip(k, n) for (ll i = k; i < n; i++)
#define fjp(k, n) for (ll j = k; j < n; j++)
#define fin(k, n) for (ll i = k; i >= n; i--)
#define fjn(k, n) for (ll j = k; j >= n; j--)
#define fp(k, n, m) for (ll k = n; k < m; k++)
#define fn(k, n, m) for (ll k = n; k >= m; k--)
#define ordered_set tree<pi, null_type,less< pi >, rb_tree_tag,tree_order_statistics_node_update>
#define totalOne(n) __builtin_popcount(n)
#define backZero(n) __builtin_ctzll(n)
#define frontZero(n) __builtin_clzll(n)
#define fx(k) for ( auto x : k )
#define test ll t;cin >> t;while (t--)
#define nli "\n"

// ==========================(debug)============================================================================================== //

#ifndef ONLINE_JUDGE
#define debug(x) cerr << #x <<" "; _printn(x); cerr << nli;
#else
#define debug(x)
#endif

void _printn(ll x){ cerr<<x<<" "; }
void _printn(int x){ cerr<<x<<" "; }
void _printn(ld x){ cerr<<x<<" "; }
void _printn(double x){ cerr<<x<<" "; }
void _printn(string x){ cerr<<x<<" "; }
void _printn(char x){ cerr<<x<<" "; }
void _printn(bool x){ cerr<<x<<" "; }
template<class T,class V>void _printn(pair<T,V> vv);
template<class T> void _printn(vector<T> vv);
template<class T> void _printn(set<T> vv);
template<class T,class V> void _printn(map<T,V> vv);
template<class T> void _printn(multiset<T> vv);
template<class T,class V>void _printn(pair<T,V> vv){ cerr<<"( ";_printn(vv.ff);cerr<<",";_printn(vv.ss);cerr<<")";}
template<class T> void _printn(vector<T> vv){ cerr<<"[ "; for(auto xx:vv){ _printn(xx);cerr<<" "; } cerr<<"]"; };
template<class T> void _printn(set<T> vv){ cerr<<"{ "; for(auto xx:vv){ _printn(xx);cerr<<" "; } cerr<<"}"; };
template<class T> void _printn(multiset<T> vv){ cerr<<"{ "; for(auto xx:vv){ _printn(xx);cerr<<" "; } cerr<<"}"; };
template<class T,class V> void _printn(map<T,V> vv){ cerr<<"{ "; for(auto xx:vv){ _printn(xx);cerr<<" "; } cerr<<"}"; };

// ==========================(debug)============================================================================================== //

ll n,m,tp,tp2,res,cnt,sum,tptp,ans;
const ll mx = 200+5;
const ll mod = 1e9+7;

// ==========================(MOD)=============================================================================================== //

ll mod_add(ll aa,ll bb){ return ((aa%mod)+(bb%mod))%mod; }
ll mod_minus(ll aa,ll bb){ return (((aa%mod)-(bb%mod))+10*mod)%mod; }
ll mod_mul(ll aa,ll bb){ return ((aa%mod)*(bb%mod))%mod; }
ll mod_power(ll aa,ll bb){ aa%=mod; ll empowered = 1; bb%=mod-1; while(bb > 0){ if(bb & 1) empowered = mod_mul(empowered,aa); bb = bb >> 1; aa = mod_mul(aa,aa); } return empowered; }
ll mod_divi(ll aa,ll bb){ aa=mod_mul(aa,mod_power(bb,mod-2)); return aa; }

// ==========================(MOD)=============================================================================================== //

bool f = false;
ll a[mx];
ll b[mx];
ll dp[mx][mx][mx][2];

int main(){
    ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    // #ifndef ONLINE_JUDGE
    //     freopen("input1.txt", "r", stdin);
    //     freopen("output1.txt", "w", stdout);
    //     freopen("error1.txt", "w", stderr);
    // #endif // ONLINE_JUDGE

        cin>>n>>m;
        fip(1,n+1){
        	cin>>a[i];
        }
        fip(1,n+1){
        	cin>>b[i];
        }
        fip(0,n+1)
        	fjp(0,n+1)
        		fp(k,0,n+1)
        			dp[i][j][k][0] = dp[i][j][k][1] = 1e18;
        fip(1,n+1){
        	if(a[i]<=b[i])
        		dp[0][i][1][0] = a[i];
        	else
        		dp[0][i][0][0] = a[i];
        }
        fip(1,n+1){
        	if(m-a[i]<=b[i])
        		dp[i][0][1][1] = m-a[i];
        	else
        		dp[i][0][0][1] = m-a[i];
        }
        dp[0][0][0][0] = 0;
        dp[0][0][0][1] = 0;
        fjp(0,n+1){
        	fip(0,1){
        		fp(k,0,n){
		    		// fp(l,,n+1){
        				ll l = j + 1;
						if(l>j){
							if(dp[i][j][k][0]+a[l]-a[j] <= b[l])
								dp[i][l][k+1][0] = min(dp[i][j][k][0]+a[l]-a[j],dp[i][l][k+1][0]);
							else
								dp[i][l][k][0] = min(dp[i][j][k][0]+a[l]-a[j],dp[i][l][k][0]);
							if(dp[i][j][k][0]+m-a[l]+a[j] <= b[l])
								dp[l][j][k+1][1] = min(dp[i][j][k][0]+m-a[l]+a[j],dp[l][j][k+1][1]);
							else
								dp[l][j][k][1] = min(dp[i][j][k][0]+m-a[l]+a[j],dp[l][j][k][1]);
						}
						l = n;
						if(l>j){
							if(dp[i][j][k][0]+a[l]-a[j] <= b[l])
								dp[i][l][k+1][0] = min(dp[i][j][k][0]+a[l]-a[j],dp[i][l][k+1][0]);
							else
								dp[i][l][k][0] = min(dp[i][j][k][0]+a[l]-a[j],dp[i][l][k][0]);
							if(dp[i][j][k][0]+m-a[l]+a[j] <= b[l])
								dp[l][j][k+1][1] = min(dp[i][j][k][0]+m-a[l]+a[j],dp[l][j][k+1][1]);
							else
								dp[l][j][k][1] = min(dp[i][j][k][0]+m-a[l]+a[j],dp[l][j][k][1]);
						}
					// }
				}
        	}
        	fin(n,1){
        		fp(k,0,n){
        			// debug(i);
        			// debug(j);
        			// debug(k);
        			// debug(dp[i][j][k][0]);
        			// debug(dp[i][j][k][1]);
        			ll l;        				
        			if(j==0){
        				// fp(l,1,n+1){
        				l = i - 1;

        					if(l<i){
        						if(dp[i][j][k][1]+a[i]-a[l] <= b[l])
	        						dp[l][j][k+1][1] = min(dp[i][j][k][1]+a[i]-a[l],dp[l][j][k+1][1]);
	        					else
	        						dp[l][j][k][1] = min(dp[i][j][k][1]+a[i]-a[l],dp[l][j][k][1] );
	        					if(dp[i][j][k][1]+a[l]+m-a[i] <= b[l])
	        						dp[i][l][k+1][0] = min(dp[i][j][k][1]+a[l]+m-a[i],dp[i][l][k+1][0]);
	        					else
	        						dp[i][l][k][0] = min(dp[i][j][k][1]+a[l]+m-a[i],dp[i][l][k][0] );
        					}
        				l = 1;
        				if(l<i){
        						if(dp[i][j][k][1]+a[i]-a[l] <= b[l])
	        						dp[l][j][k+1][1] = min(dp[i][j][k][1]+a[i]-a[l],dp[l][j][k+1][1]);
	        					else
	        						dp[l][j][k][1] = min(dp[i][j][k][1]+a[i]-a[l],dp[l][j][k][1] );
	        					if(dp[i][j][k][1]+a[l]+m-a[i] <= b[l])
	        						dp[i][l][k+1][0] = min(dp[i][j][k][1]+a[l]+m-a[i],dp[i][l][k+1][0]);
	        					else
	        						dp[i][l][k][0] = min(dp[i][j][k][1]+a[l]+m-a[i],dp[i][l][k][0] );
        					}
        				// }
        			}else{
        				l = j + 1;
        				// fp(l,1,n+1){
	        				if(j<i && l<i && l>j){
	        					if(dp[i][j][k][0]+a[l]-a[j] <= b[l])
	        						dp[i][l][k+1][0] = min(dp[i][j][k][0]+a[l]-a[j],dp[i][l][k+1][0]);
	        					else
	        						dp[i][l][k][0] = min(dp[i][j][k][0]+a[l]-a[j],dp[i][l][k][0]);
	        					if(dp[i][j][k][1]+a[l]+m-a[i] <= b[l])
	        						dp[i][l][k+1][0] = min(dp[i][j][k][1]+a[l]+m-a[i],dp[i][l][k+1][0]);
	        					else
	        						dp[i][l][k][0] = min(dp[i][j][k][1]+a[l]+m-a[i],dp[i][l][k][0] );
	        					if(dp[i][j][k][1]+a[i]-a[l] <= b[l])
	        						dp[l][j][k+1][1] = min(dp[i][j][k][1]+a[i]-a[l],dp[l][j][k+1][1]);
	        					else
	        						dp[l][j][k][1] = min(dp[i][j][k][1]+a[i]-a[l],dp[l][j][k][1] );
	        					if(dp[i][j][k][0]+m-a[l]+a[j] <= b[l])
	        						dp[l][j][k+1][1] = min(dp[i][j][k][0]+m-a[l]+a[j],dp[l][j][k+1][1]);
	        					else
	        						dp[l][j][k][1] = min(dp[i][j][k][0]+m-a[l]+a[j],dp[l][j][k][1]);
	        				}
	        			l = i - 1;
	        				if(j<i && l<i && l>j){
	        					if(dp[i][j][k][0]+a[l]-a[j] <= b[l])
	        						dp[i][l][k+1][0] = min(dp[i][j][k][0]+a[l]-a[j],dp[i][l][k+1][0]);
	        					else
	        						dp[i][l][k][0] = min(dp[i][j][k][0]+a[l]-a[j],dp[i][l][k][0]);
	        					if(dp[i][j][k][1]+a[l]+m-a[i] <= b[l])
	        						dp[i][l][k+1][0] = min(dp[i][j][k][1]+a[l]+m-a[i],dp[i][l][k+1][0]);
	        					else
	        						dp[i][l][k][0] = min(dp[i][j][k][1]+a[l]+m-a[i],dp[i][l][k][0] );
	        					if(dp[i][j][k][1]+a[i]-a[l] <= b[l])
	        						dp[l][j][k+1][1] = min(dp[i][j][k][1]+a[i]-a[l],dp[l][j][k+1][1]);
	        					else
	        						dp[l][j][k][1] = min(dp[i][j][k][1]+a[i]-a[l],dp[l][j][k][1] );
	        					if(dp[i][j][k][0]+m-a[l]+a[j] <= b[l])
	        						dp[l][j][k+1][1] = min(dp[i][j][k][0]+m-a[l]+a[j],dp[l][j][k+1][1]);
	        					else
	        						dp[l][j][k][1] = min(dp[i][j][k][0]+m-a[l]+a[j],dp[l][j][k][1]);
	        				}
	        			// }
        			}        			
        			// cerr<<nli;
        		}
        	}
        }
        ans = -1e18;
        fip(0,n+1)
        	fjn(n,0)
        		fp(k,0,n+1){
        			if(dp[i][j][k][0]!=1e18 || dp[i][j][k][1]!=1e18)
        				ans = max(k,ans);
        		}
        cout<<ans<<nli;


    // cerr << "Time elapsed: " << setprecision(6) << 1000.0 * clock() / CLOCKS_PER_SEC << "ms\n";
    return 0;
} 
# Verdict Execution time Memory Grader output
1 Correct 1 ms 4440 KB Output is correct
2 Correct 3 ms 4444 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
4 Correct 1 ms 4440 KB Output is correct
5 Correct 1 ms 6492 KB Output is correct
6 Correct 1 ms 8540 KB Output is correct
7 Correct 1 ms 6492 KB Output is correct
8 Correct 1 ms 8540 KB Output is correct
9 Correct 2 ms 8540 KB Output is correct
10 Correct 0 ms 2396 KB Output is correct
11 Correct 1 ms 2396 KB Output is correct
12 Correct 1 ms 8540 KB Output is correct
13 Correct 2 ms 8540 KB Output is correct
14 Correct 1 ms 6492 KB Output is correct
15 Correct 1 ms 6492 KB Output is correct
16 Correct 1 ms 8540 KB Output is correct
17 Correct 2 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 4440 KB Output is correct
2 Correct 3 ms 4444 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
4 Correct 1 ms 4440 KB Output is correct
5 Correct 1 ms 6492 KB Output is correct
6 Correct 1 ms 8540 KB Output is correct
7 Correct 1 ms 6492 KB Output is correct
8 Correct 1 ms 8540 KB Output is correct
9 Correct 2 ms 8540 KB Output is correct
10 Correct 0 ms 2396 KB Output is correct
11 Correct 1 ms 2396 KB Output is correct
12 Correct 1 ms 8540 KB Output is correct
13 Correct 2 ms 8540 KB Output is correct
14 Correct 1 ms 6492 KB Output is correct
15 Correct 1 ms 6492 KB Output is correct
16 Correct 1 ms 8540 KB Output is correct
17 Correct 2 ms 8540 KB Output is correct
18 Correct 1 ms 10588 KB Output is correct
19 Correct 1 ms 8540 KB Output is correct
20 Correct 1 ms 8540 KB Output is correct
21 Correct 2 ms 10588 KB Output is correct
22 Correct 1 ms 6488 KB Output is correct
23 Correct 2 ms 10840 KB Output is correct
24 Correct 1 ms 10584 KB Output is correct
25 Correct 2 ms 10584 KB Output is correct
26 Correct 2 ms 10584 KB Output is correct
27 Correct 1 ms 6492 KB Output is correct
28 Correct 2 ms 6492 KB Output is correct
29 Correct 1 ms 10588 KB Output is correct
30 Correct 1 ms 10588 KB Output is correct
31 Correct 1 ms 10588 KB Output is correct
32 Correct 1 ms 10588 KB Output is correct
33 Correct 2 ms 10588 KB Output is correct
34 Correct 1 ms 10588 KB Output is correct
35 Correct 2 ms 10588 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 4440 KB Output is correct
2 Correct 3 ms 4444 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
4 Correct 1 ms 4440 KB Output is correct
5 Correct 1 ms 6492 KB Output is correct
6 Correct 1 ms 8540 KB Output is correct
7 Correct 1 ms 6492 KB Output is correct
8 Correct 1 ms 8540 KB Output is correct
9 Correct 2 ms 8540 KB Output is correct
10 Correct 0 ms 2396 KB Output is correct
11 Correct 1 ms 2396 KB Output is correct
12 Correct 1 ms 8540 KB Output is correct
13 Correct 2 ms 8540 KB Output is correct
14 Correct 1 ms 6492 KB Output is correct
15 Correct 1 ms 6492 KB Output is correct
16 Correct 1 ms 8540 KB Output is correct
17 Correct 2 ms 8540 KB Output is correct
18 Correct 107 ms 119380 KB Output is correct
19 Correct 38 ms 92924 KB Output is correct
20 Correct 19 ms 68184 KB Output is correct
21 Correct 35 ms 90716 KB Output is correct
22 Correct 46 ms 103000 KB Output is correct
23 Correct 16 ms 62044 KB Output is correct
24 Correct 14 ms 56040 KB Output is correct
25 Correct 16 ms 62200 KB Output is correct
26 Correct 8 ms 37468 KB Output is correct
27 Correct 17 ms 64088 KB Output is correct
28 Correct 14 ms 53848 KB Output is correct
29 Correct 17 ms 64088 KB Output is correct
30 Correct 13 ms 55900 KB Output is correct
31 Correct 16 ms 62044 KB Output is correct
32 Correct 9 ms 45716 KB Output is correct
33 Correct 16 ms 62044 KB Output is correct
34 Correct 6 ms 37468 KB Output is correct
35 Correct 19 ms 62044 KB Output is correct
36 Correct 7 ms 41560 KB Output is correct
37 Correct 16 ms 64232 KB Output is correct
38 Correct 10 ms 47708 KB Output is correct
39 Correct 17 ms 64092 KB Output is correct
40 Correct 10 ms 49844 KB Output is correct
41 Correct 91 ms 133972 KB Output is correct
42 Correct 53 ms 109148 KB Output is correct
43 Correct 85 ms 133968 KB Output is correct
44 Correct 55 ms 109372 KB Output is correct
45 Correct 85 ms 134012 KB Output is correct
46 Correct 61 ms 109148 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 4440 KB Output is correct
2 Correct 3 ms 4444 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
4 Correct 1 ms 4440 KB Output is correct
5 Correct 1 ms 6492 KB Output is correct
6 Correct 1 ms 8540 KB Output is correct
7 Correct 1 ms 6492 KB Output is correct
8 Correct 1 ms 8540 KB Output is correct
9 Correct 2 ms 8540 KB Output is correct
10 Correct 0 ms 2396 KB Output is correct
11 Correct 1 ms 2396 KB Output is correct
12 Correct 1 ms 8540 KB Output is correct
13 Correct 2 ms 8540 KB Output is correct
14 Correct 1 ms 6492 KB Output is correct
15 Correct 1 ms 6492 KB Output is correct
16 Correct 1 ms 8540 KB Output is correct
17 Correct 2 ms 8540 KB Output is correct
18 Correct 1 ms 10588 KB Output is correct
19 Correct 1 ms 8540 KB Output is correct
20 Correct 1 ms 8540 KB Output is correct
21 Correct 2 ms 10588 KB Output is correct
22 Correct 1 ms 6488 KB Output is correct
23 Correct 2 ms 10840 KB Output is correct
24 Correct 1 ms 10584 KB Output is correct
25 Correct 2 ms 10584 KB Output is correct
26 Correct 2 ms 10584 KB Output is correct
27 Correct 1 ms 6492 KB Output is correct
28 Correct 2 ms 6492 KB Output is correct
29 Correct 1 ms 10588 KB Output is correct
30 Correct 1 ms 10588 KB Output is correct
31 Correct 1 ms 10588 KB Output is correct
32 Correct 1 ms 10588 KB Output is correct
33 Correct 2 ms 10588 KB Output is correct
34 Correct 1 ms 10588 KB Output is correct
35 Correct 2 ms 10588 KB Output is correct
36 Correct 107 ms 119380 KB Output is correct
37 Correct 38 ms 92924 KB Output is correct
38 Correct 19 ms 68184 KB Output is correct
39 Correct 35 ms 90716 KB Output is correct
40 Correct 46 ms 103000 KB Output is correct
41 Correct 16 ms 62044 KB Output is correct
42 Correct 14 ms 56040 KB Output is correct
43 Correct 16 ms 62200 KB Output is correct
44 Correct 8 ms 37468 KB Output is correct
45 Correct 17 ms 64088 KB Output is correct
46 Correct 14 ms 53848 KB Output is correct
47 Correct 17 ms 64088 KB Output is correct
48 Correct 13 ms 55900 KB Output is correct
49 Correct 16 ms 62044 KB Output is correct
50 Correct 9 ms 45716 KB Output is correct
51 Correct 16 ms 62044 KB Output is correct
52 Correct 6 ms 37468 KB Output is correct
53 Correct 19 ms 62044 KB Output is correct
54 Correct 7 ms 41560 KB Output is correct
55 Correct 16 ms 64232 KB Output is correct
56 Correct 10 ms 47708 KB Output is correct
57 Correct 17 ms 64092 KB Output is correct
58 Correct 10 ms 49844 KB Output is correct
59 Correct 91 ms 133972 KB Output is correct
60 Correct 53 ms 109148 KB Output is correct
61 Correct 85 ms 133968 KB Output is correct
62 Correct 55 ms 109372 KB Output is correct
63 Correct 85 ms 134012 KB Output is correct
64 Correct 61 ms 109148 KB Output is correct
65 Correct 77 ms 125788 KB Output is correct
66 Correct 70 ms 121684 KB Output is correct
67 Correct 64 ms 117596 KB Output is correct
68 Correct 58 ms 113744 KB Output is correct
69 Correct 73 ms 125784 KB Output is correct
70 Correct 71 ms 123736 KB Output is correct
71 Correct 74 ms 123744 KB Output is correct
72 Correct 71 ms 123596 KB Output is correct
73 Correct 65 ms 119636 KB Output is correct
74 Correct 60 ms 115548 KB Output is correct
75 Correct 68 ms 121688 KB Output is correct
76 Correct 94 ms 129892 KB Output is correct
77 Correct 81 ms 130132 KB Output is correct
78 Correct 59 ms 115544 KB Output is correct
79 Correct 61 ms 115540 KB Output is correct
80 Correct 78 ms 129876 KB Output is correct
81 Correct 64 ms 117592 KB Output is correct
82 Correct 66 ms 119648 KB Output is correct
83 Correct 85 ms 134000 KB Output is correct
84 Correct 69 ms 123744 KB Output is correct
85 Correct 77 ms 127840 KB Output is correct
86 Correct 88 ms 127840 KB Output is correct
87 Correct 78 ms 121692 KB Output is correct
88 Correct 86 ms 133968 KB Output is correct
89 Correct 87 ms 134000 KB Output is correct
90 Correct 72 ms 121696 KB Output is correct
91 Correct 87 ms 134000 KB Output is correct
92 Correct 96 ms 133996 KB Output is correct
93 Correct 84 ms 131928 KB Output is correct