Submission #956784

# Submission time Handle Problem Language Result Execution time Memory
956784 2024-04-02T13:04:18 Z GrindMachine Bowling (BOI15_bow) C++17
100 / 100
280 ms 1824 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*



*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

void solve(int test_case)
{
    ll n; cin >> n;
    string s; cin >> s;
    s = "$" + s;
    vector<ll> a(n+5);
    rep1(i,n) cin >> a[i];

    ll m = 30*n+5;
    ll dp1[m+5][15][15], dp2[m+5][15][15];
    memset(dp1,0,sizeof dp1);
    memset(dp2,0,sizeof dp2);
    if(a[n] != -1){
        dp1[a[n]][0][0] = 1;
    }
    else{
        rep(j,m+1){
            dp1[j][0][0] = 1;
        }
    }

    ll ptr = 2*n+1;

    auto ok = [&](string put, string pat){
        assert(sz(put) == sz(pat));
        rep(i,sz(put)){
            if(pat[i] == '?') conts;
            if(put[i] != pat[i]) return false; 
        }

        return true;
    };

    // final stage
    {
        string pat = "";
        rep(iter,3){
            pat.pb(s[ptr--]);
        }

        reverse(all(pat));
        vector<array<ll,3>> possible;

        // xxx
        if(ok("xxx",pat)){
            ll score = 30;
            possible.pb({score,10,10});
        }

        // xxA
        rep(A,10){
            string curr = "xx"+to_string(A);
            if(ok(curr,pat)){
                ll score = 20+A;
                possible.pb({score,10,10});
            }
        }

        // xA/
        rep(A,10){
            string curr = "x"+to_string(A)+"/";
            if(ok(curr,pat)){
                ll score = 20;
                possible.pb({score,10,A});
            }
        }

        // xAB
        rep(A,10){
            rep(B,10){
                if(A+B >= 10) break;
                string curr = "x"+to_string(A)+to_string(B);
                if(ok(curr,pat)){
                    ll score = 10+A+B;
                    possible.pb({score,10,A});
                }
            }
        }

        // A/x
        rep(A,10){
            string curr = to_string(A)+"/x";
            if(ok(curr,pat)){
                ll score = 20;
                possible.pb({score,A,10-A});
            }
        }

        // A/B
        rep(A,10){
            rep(B,10){
                string curr = to_string(A)+"/"+to_string(B);
                if(ok(curr,pat)){
                    ll score = 10+B;
                    possible.pb({score,A,10-A});
                }
            }
        }

        // AB-
        rep(A,10){
            rep(B,10){
                if(A+B >= 10) break;
                string curr = to_string(A)+to_string(B)+"-";
                if(ok(curr,pat)){
                    ll score = A+B;
                    possible.pb({score,A,B});
                }
            }
        }

        rep(j,m+1){
            if(!dp1[j][0][0]) conts;
            for(auto [score,x,y] : possible){
                if(j >= score){
                    dp2[j-score][x][y] += dp1[j][0][0];
                }
            }
        }
    }

    rev(i,n-1,1){
        string pat = "";
        rep(iter,2){
            pat.pb(s[ptr--]);
        }

        reverse(all(pat));

        rep(j,m+1){
            rep(x,11){
                rep(y,11){
                    if(a[i] != -1 and a[i] != j){
                        dp1[j][x][y] = 0;
                    }
                    else{
                        dp1[j][x][y] = dp2[j][x][y];
                    }

                    dp2[j][x][y] = 0;
                }
            }
        }

        rep(x,11){
            rep(y,11){
                vector<array<ll,3>> possible;

                // x-
                if(ok("x-",pat)){
                    ll score = 10+x+y;
                    possible.pb({score,10,x});
                }

                // A/
                rep(A,10){
                    string curr = to_string(A)+"/";
                    if(ok(curr,pat)){
                        ll score = 10+x;
                        possible.pb({score,A,10-A});
                    }
                }

                // AB
                rep(A,10){
                    rep(B,10){
                        if(A+B >= 10) conts;
                        string curr = to_string(A)+to_string(B);
                        if(ok(curr,pat)){
                            ll score = A+B;
                            possible.pb({score,A,B});
                        }
                    }
                }

                rep(j,m+1){
                    if(!dp1[j][x][y]) conts;
                    for(auto [score,x2,y2] : possible){
                        if(j >= score){
                            dp2[j-score][x2][y2] += dp1[j][x][y];
                        }
                    }
                }
            }
        }
    }

    ll ans = 0;
    rep(x,11){
        rep(y,11){
            ans += dp2[0][x][y];
        }
    }

    cout << ans << endl;
}

int main()
{
    fastio;

    int t = 1;
    cin >> t;

    rep1(i, t) {
        solve(i);
    }

    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 26 ms 1372 KB Output is correct
2 Correct 34 ms 1372 KB Output is correct
3 Correct 37 ms 1368 KB Output is correct
4 Correct 39 ms 1372 KB Output is correct
5 Correct 41 ms 1528 KB Output is correct
6 Correct 46 ms 1528 KB Output is correct
7 Correct 67 ms 1620 KB Output is correct
8 Correct 49 ms 1368 KB Output is correct
9 Correct 40 ms 1372 KB Output is correct
10 Correct 49 ms 1540 KB Output is correct
11 Correct 81 ms 1372 KB Output is correct
12 Correct 10 ms 600 KB Output is correct
13 Correct 4 ms 604 KB Output is correct
14 Correct 11 ms 604 KB Output is correct
15 Correct 3 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 38 ms 1368 KB Output is correct
2 Correct 51 ms 1368 KB Output is correct
3 Correct 49 ms 1372 KB Output is correct
4 Correct 50 ms 1824 KB Output is correct
5 Correct 61 ms 1372 KB Output is correct
6 Correct 87 ms 1452 KB Output is correct
7 Correct 88 ms 1368 KB Output is correct
8 Correct 85 ms 1528 KB Output is correct
9 Correct 83 ms 1536 KB Output is correct
10 Correct 107 ms 1372 KB Output is correct
11 Correct 116 ms 1372 KB Output is correct
12 Correct 124 ms 1372 KB Output is correct
13 Correct 116 ms 1528 KB Output is correct
14 Correct 102 ms 1532 KB Output is correct
15 Correct 107 ms 1372 KB Output is correct
16 Correct 105 ms 1528 KB Output is correct
17 Correct 101 ms 1372 KB Output is correct
18 Correct 124 ms 1528 KB Output is correct
19 Correct 128 ms 1368 KB Output is correct
20 Correct 129 ms 1776 KB Output is correct
21 Correct 146 ms 1532 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 22 ms 1372 KB Output is correct
2 Correct 55 ms 1524 KB Output is correct
3 Correct 48 ms 1372 KB Output is correct
4 Correct 45 ms 1536 KB Output is correct
5 Correct 43 ms 1372 KB Output is correct
6 Correct 82 ms 1372 KB Output is correct
7 Correct 82 ms 1372 KB Output is correct
8 Correct 81 ms 1528 KB Output is correct
9 Correct 84 ms 1528 KB Output is correct
10 Correct 98 ms 1372 KB Output is correct
11 Correct 98 ms 1372 KB Output is correct
12 Correct 97 ms 1528 KB Output is correct
13 Correct 98 ms 1524 KB Output is correct
14 Correct 105 ms 1372 KB Output is correct
15 Correct 94 ms 1528 KB Output is correct
16 Correct 97 ms 1548 KB Output is correct
17 Correct 97 ms 1368 KB Output is correct
18 Correct 91 ms 1544 KB Output is correct
19 Correct 85 ms 1372 KB Output is correct
20 Correct 81 ms 1528 KB Output is correct
21 Correct 81 ms 1524 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 90 ms 1372 KB Output is correct
2 Correct 64 ms 1532 KB Output is correct
3 Correct 88 ms 1420 KB Output is correct
4 Correct 60 ms 1416 KB Output is correct
5 Correct 59 ms 1372 KB Output is correct
6 Correct 59 ms 1412 KB Output is correct
7 Correct 61 ms 1528 KB Output is correct
8 Correct 55 ms 1372 KB Output is correct
9 Correct 59 ms 1372 KB Output is correct
10 Correct 161 ms 1372 KB Output is correct
11 Correct 159 ms 1620 KB Output is correct
12 Correct 148 ms 1624 KB Output is correct
13 Correct 144 ms 1372 KB Output is correct
14 Correct 98 ms 1368 KB Output is correct
15 Correct 99 ms 1620 KB Output is correct
16 Correct 98 ms 1624 KB Output is correct
17 Correct 95 ms 1368 KB Output is correct
18 Correct 80 ms 1528 KB Output is correct
19 Correct 80 ms 1524 KB Output is correct
20 Correct 79 ms 1692 KB Output is correct
21 Correct 74 ms 1368 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 26 ms 1372 KB Output is correct
2 Correct 34 ms 1372 KB Output is correct
3 Correct 37 ms 1368 KB Output is correct
4 Correct 39 ms 1372 KB Output is correct
5 Correct 41 ms 1528 KB Output is correct
6 Correct 46 ms 1528 KB Output is correct
7 Correct 67 ms 1620 KB Output is correct
8 Correct 49 ms 1368 KB Output is correct
9 Correct 40 ms 1372 KB Output is correct
10 Correct 49 ms 1540 KB Output is correct
11 Correct 81 ms 1372 KB Output is correct
12 Correct 10 ms 600 KB Output is correct
13 Correct 4 ms 604 KB Output is correct
14 Correct 11 ms 604 KB Output is correct
15 Correct 3 ms 604 KB Output is correct
16 Correct 38 ms 1368 KB Output is correct
17 Correct 51 ms 1368 KB Output is correct
18 Correct 49 ms 1372 KB Output is correct
19 Correct 50 ms 1824 KB Output is correct
20 Correct 61 ms 1372 KB Output is correct
21 Correct 87 ms 1452 KB Output is correct
22 Correct 88 ms 1368 KB Output is correct
23 Correct 85 ms 1528 KB Output is correct
24 Correct 83 ms 1536 KB Output is correct
25 Correct 107 ms 1372 KB Output is correct
26 Correct 116 ms 1372 KB Output is correct
27 Correct 124 ms 1372 KB Output is correct
28 Correct 116 ms 1528 KB Output is correct
29 Correct 102 ms 1532 KB Output is correct
30 Correct 107 ms 1372 KB Output is correct
31 Correct 105 ms 1528 KB Output is correct
32 Correct 101 ms 1372 KB Output is correct
33 Correct 124 ms 1528 KB Output is correct
34 Correct 128 ms 1368 KB Output is correct
35 Correct 129 ms 1776 KB Output is correct
36 Correct 146 ms 1532 KB Output is correct
37 Correct 22 ms 1372 KB Output is correct
38 Correct 55 ms 1524 KB Output is correct
39 Correct 48 ms 1372 KB Output is correct
40 Correct 45 ms 1536 KB Output is correct
41 Correct 43 ms 1372 KB Output is correct
42 Correct 82 ms 1372 KB Output is correct
43 Correct 82 ms 1372 KB Output is correct
44 Correct 81 ms 1528 KB Output is correct
45 Correct 84 ms 1528 KB Output is correct
46 Correct 98 ms 1372 KB Output is correct
47 Correct 98 ms 1372 KB Output is correct
48 Correct 97 ms 1528 KB Output is correct
49 Correct 98 ms 1524 KB Output is correct
50 Correct 105 ms 1372 KB Output is correct
51 Correct 94 ms 1528 KB Output is correct
52 Correct 97 ms 1548 KB Output is correct
53 Correct 97 ms 1368 KB Output is correct
54 Correct 91 ms 1544 KB Output is correct
55 Correct 85 ms 1372 KB Output is correct
56 Correct 81 ms 1528 KB Output is correct
57 Correct 81 ms 1524 KB Output is correct
58 Correct 90 ms 1372 KB Output is correct
59 Correct 64 ms 1532 KB Output is correct
60 Correct 88 ms 1420 KB Output is correct
61 Correct 60 ms 1416 KB Output is correct
62 Correct 59 ms 1372 KB Output is correct
63 Correct 59 ms 1412 KB Output is correct
64 Correct 61 ms 1528 KB Output is correct
65 Correct 55 ms 1372 KB Output is correct
66 Correct 59 ms 1372 KB Output is correct
67 Correct 161 ms 1372 KB Output is correct
68 Correct 159 ms 1620 KB Output is correct
69 Correct 148 ms 1624 KB Output is correct
70 Correct 144 ms 1372 KB Output is correct
71 Correct 98 ms 1368 KB Output is correct
72 Correct 99 ms 1620 KB Output is correct
73 Correct 98 ms 1624 KB Output is correct
74 Correct 95 ms 1368 KB Output is correct
75 Correct 80 ms 1528 KB Output is correct
76 Correct 80 ms 1524 KB Output is correct
77 Correct 79 ms 1692 KB Output is correct
78 Correct 74 ms 1368 KB Output is correct
79 Correct 86 ms 1532 KB Output is correct
80 Correct 63 ms 1368 KB Output is correct
81 Correct 61 ms 1620 KB Output is correct
82 Correct 57 ms 1372 KB Output is correct
83 Correct 51 ms 1372 KB Output is correct
84 Correct 88 ms 1372 KB Output is correct
85 Correct 88 ms 1368 KB Output is correct
86 Correct 85 ms 1372 KB Output is correct
87 Correct 86 ms 1372 KB Output is correct
88 Correct 100 ms 1532 KB Output is correct
89 Correct 113 ms 1372 KB Output is correct
90 Correct 105 ms 1368 KB Output is correct
91 Correct 117 ms 1532 KB Output is correct
92 Correct 76 ms 1528 KB Output is correct
93 Correct 100 ms 1524 KB Output is correct
94 Correct 131 ms 1532 KB Output is correct
95 Correct 160 ms 1524 KB Output is correct
96 Correct 179 ms 1532 KB Output is correct
97 Correct 259 ms 1532 KB Output is correct
98 Correct 268 ms 1528 KB Output is correct
99 Correct 280 ms 1368 KB Output is correct
100 Correct 279 ms 1524 KB Output is correct