Submission #954984

# Submission time Handle Problem Language Result Execution time Memory
954984 2024-03-29T04:46:58 Z GrindMachine Tropical Garden (IOI11_garden) C++17
100 / 100
2210 ms 36388 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*



*/

const int MOD = 1e9 + 7;
const int N = 3e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

#include "garden.h"
#include "gardenlib.h"

vector<int> adj1[N], adj2[N];

void count_routes(int n, int m, int p, int R[][2], int q, int a[])
{
    rep(i,m){
        int u = R[i][0], v = R[i][1];
        adj1[u].pb(v), adj1[v].pb(u);
    }

    vector<int> nxt(n*2,-1);

    rep(u,n){
        auto edges = adj1[u];
        if(sz(edges) >= 2){
            {
                int v = edges[1];
                if(u == adj1[v][0]){
                    nxt[u*2] = v*2;
                }
                else{
                    nxt[u*2] = v*2+1;
                }
            }

            {
                int v = edges[0];
                if(u == adj1[v][0]){
                    nxt[u*2+1] = v*2;
                }
                else{
                    nxt[u*2+1] = v*2+1;
                }
            }
        }
        else{
            int v = edges[0];
            if(u == adj1[v][0]){
                nxt[u*2] = v*2;
            }
            else{
                nxt[u*2] = v*2+1;
            }
        }
    }

    vector<int> indeg(2*n);
    rep(i,2*n){
        if(nxt[i] != -1){
            indeg[nxt[i]]++;
        }
    }

    queue<int> que;
    rep(i,2*n){
        if(!indeg[i]){
            que.push(i);
        }
    }    

    while(!que.empty()){
        int u = que.front();
        que.pop();

        if(nxt[u] != -1){
            indeg[nxt[u]]--;
            if(!indeg[nxt[u]]){
                que.push(nxt[u]);
            }
        }
    }

    vector<int> cyc_siz(2);
    for(int s = p*2; s <= p*2+1; ++s){
        if(!indeg[s]) conts;
        int u = nxt[s];
        cyc_siz[s&1] = 1;
        while(u != s){
            cyc_siz[s&1]++;
            u = nxt[u];
        }
    }

    rep(u,2*n){
        int v = nxt[u];
        if(v == -1) conts;
        adj2[v].pb(u);
    }

    int dis[2*n][2];
    memset(dis,0x3f,sizeof dis);

    rep(x,2){
        que.push(p*2+x);
        dis[p*2+x][x] = 0;

        while(!que.empty()){
            int u = que.front();
            que.pop();

            trav(v,adj2[u]){
                if(dis[u][x]+1 >= dis[v][x]) conts;
                que.push(v);
                dis[v][x] = dis[u][x]+1;
            }
        }
    }

    vector<int> node_id(n);
    rep(i,n){
        node_id[i] = 2*i+1;
        if(sz(adj1[i]) == 1){
            node_id[i]--;
        }
    }

    rep(id,q){
        int k = a[id];
        int ans = 0;

        rep(i,n){
            int u = node_id[i];
            bool ok = false;

            rep(x,2){
                ok = false;

                int d = dis[u][x];
                int cyc = cyc_siz[x];

                if(cyc){
                    if(d <= k and (k-d)%cyc == 0){
                        ok = true;
                    }
                }
                else{
                    if(d == k){
                        ok = true;
                    }
                }

                ans += ok;
            }
        }

        answer(ans);
    }
}
# Verdict Execution time Memory Grader output
1 Correct 3 ms 14936 KB Output is correct
2 Correct 3 ms 14940 KB Output is correct
3 Correct 3 ms 14940 KB Output is correct
4 Correct 3 ms 14940 KB Output is correct
5 Correct 3 ms 14936 KB Output is correct
6 Correct 4 ms 14940 KB Output is correct
7 Correct 3 ms 14940 KB Output is correct
8 Correct 4 ms 14940 KB Output is correct
9 Correct 5 ms 14936 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 14936 KB Output is correct
2 Correct 3 ms 14940 KB Output is correct
3 Correct 3 ms 14940 KB Output is correct
4 Correct 3 ms 14940 KB Output is correct
5 Correct 3 ms 14936 KB Output is correct
6 Correct 4 ms 14940 KB Output is correct
7 Correct 3 ms 14940 KB Output is correct
8 Correct 4 ms 14940 KB Output is correct
9 Correct 5 ms 14936 KB Output is correct
10 Correct 3 ms 15192 KB Output is correct
11 Correct 11 ms 17244 KB Output is correct
12 Correct 22 ms 18780 KB Output is correct
13 Correct 36 ms 27996 KB Output is correct
14 Correct 81 ms 30672 KB Output is correct
15 Correct 78 ms 30840 KB Output is correct
16 Correct 60 ms 26708 KB Output is correct
17 Correct 55 ms 25428 KB Output is correct
18 Correct 22 ms 18780 KB Output is correct
19 Correct 70 ms 30548 KB Output is correct
20 Correct 84 ms 30880 KB Output is correct
21 Correct 61 ms 26624 KB Output is correct
22 Correct 56 ms 25168 KB Output is correct
23 Correct 71 ms 31812 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 14936 KB Output is correct
2 Correct 3 ms 14940 KB Output is correct
3 Correct 3 ms 14940 KB Output is correct
4 Correct 3 ms 14940 KB Output is correct
5 Correct 3 ms 14936 KB Output is correct
6 Correct 4 ms 14940 KB Output is correct
7 Correct 3 ms 14940 KB Output is correct
8 Correct 4 ms 14940 KB Output is correct
9 Correct 5 ms 14936 KB Output is correct
10 Correct 3 ms 15192 KB Output is correct
11 Correct 11 ms 17244 KB Output is correct
12 Correct 22 ms 18780 KB Output is correct
13 Correct 36 ms 27996 KB Output is correct
14 Correct 81 ms 30672 KB Output is correct
15 Correct 78 ms 30840 KB Output is correct
16 Correct 60 ms 26708 KB Output is correct
17 Correct 55 ms 25428 KB Output is correct
18 Correct 22 ms 18780 KB Output is correct
19 Correct 70 ms 30548 KB Output is correct
20 Correct 84 ms 30880 KB Output is correct
21 Correct 61 ms 26624 KB Output is correct
22 Correct 56 ms 25168 KB Output is correct
23 Correct 71 ms 31812 KB Output is correct
24 Correct 4 ms 14936 KB Output is correct
25 Correct 80 ms 17244 KB Output is correct
26 Correct 114 ms 18860 KB Output is correct
27 Correct 2039 ms 28028 KB Output is correct
28 Correct 788 ms 30804 KB Output is correct
29 Correct 2206 ms 30872 KB Output is correct
30 Correct 1292 ms 26964 KB Output is correct
31 Correct 1252 ms 25436 KB Output is correct
32 Correct 108 ms 18780 KB Output is correct
33 Correct 793 ms 30604 KB Output is correct
34 Correct 2210 ms 30856 KB Output is correct
35 Correct 1380 ms 26872 KB Output is correct
36 Correct 1254 ms 25428 KB Output is correct
37 Correct 649 ms 32044 KB Output is correct
38 Correct 1780 ms 36388 KB Output is correct