Submission #954983

# Submission time Handle Problem Language Result Execution time Memory
954983 2024-03-29T04:45:42 Z GrindMachine Tropical Garden (IOI11_garden) C++17
100 / 100
2208 ms 38364 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*



*/

const int MOD = 1e9 + 7;
const int N = 3e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

#include "garden.h"
#include "gardenlib.h"

vector<int> adj1[N], adj2[N];

void count_routes(int n, int m, int p, int R[][2], int q, int a[])
{
    rep(i,m){
        int u = R[i][0], v = R[i][1];
        adj1[u].pb(v), adj1[v].pb(u);
    }

    vector<int> nxt(n*2,-1);

    rep(u,n){
        auto edges = adj1[u];
        if(sz(edges) >= 2){
            {
                int v = edges[1];
                if(u == adj1[v][0]){
                    nxt[u*2] = v*2;
                }
                else{
                    nxt[u*2] = v*2+1;
                }
            }

            {
                int v = edges[0];
                if(u == adj1[v][0]){
                    nxt[u*2+1] = v*2;
                }
                else{
                    nxt[u*2+1] = v*2+1;
                }
            }
        }
        else{
            int v = edges[0];
            if(u == adj1[v][0]){
                nxt[u*2] = v*2;
            }
            else{
                nxt[u*2] = v*2+1;
            }
        }
    }

    vector<int> indeg(2*n);
    rep(i,2*n){
        if(nxt[i] != -1){
            indeg[nxt[i]]++;
        }
    }

    queue<int> que;
    rep(i,2*n){
        if(!indeg[i]){
            que.push(i);
        }
    }    

    while(!que.empty()){
        int u = que.front();
        que.pop();

        if(nxt[u] != -1){
            indeg[nxt[u]]--;
            if(!indeg[nxt[u]]){
                que.push(nxt[u]);
            }
        }
    }

    vector<int> cyc_siz(2);
    for(int s = p*2; s <= p*2+1; ++s){
        if(!indeg[s]) conts;
        int u = nxt[s];
        cyc_siz[s&1] = 1;
        while(u != s){
            cyc_siz[s&1]++;
            u = nxt[u];
        }
    }

    rep(u,2*n){
        int v = nxt[u];
        if(v == -1) conts;
        adj2[v].pb(u);
    }

    int dis[2*n][2];
    memset(dis,0x3f,sizeof dis);

    rep(x,2){
        que.push(p*2+x);
        dis[p*2+x][x] = 0;

        while(!que.empty()){
            int u = que.front();
            que.pop();

            trav(v,adj2[u]){
                if(dis[u][x]+1 >= dis[v][x]) conts;
                que.push(v);
                dis[v][x] = dis[u][x]+1;
            }
        }
    }

    vector<int> node_id(n);
    rep(i,n){
        node_id[i] = 2*i+1;
        if(sz(adj1[i]) == 1){
            node_id[i]--;
        }
    }

    rep(id,q){
        int k = a[id];
        int ans = 0;

        rep(i,n){
            int u = node_id[i];
            bool ok = false;

            rep(x,2){
                int d = dis[u][x];
                int cyc = cyc_siz[x];

                if(cyc){
                    if(d <= k and (k-d)%cyc == 0){
                        ok = true;
                    }
                }
                else{
                    if(d == k){
                        ok = true;
                    }
                }
            }

            ans += ok;
        }

        answer(ans);
    }
}
# Verdict Execution time Memory Grader output
1 Correct 3 ms 14940 KB Output is correct
2 Correct 5 ms 14940 KB Output is correct
3 Correct 4 ms 14940 KB Output is correct
4 Correct 3 ms 14940 KB Output is correct
5 Correct 3 ms 14940 KB Output is correct
6 Correct 4 ms 14940 KB Output is correct
7 Correct 4 ms 14984 KB Output is correct
8 Correct 4 ms 14940 KB Output is correct
9 Correct 5 ms 15196 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 14940 KB Output is correct
2 Correct 5 ms 14940 KB Output is correct
3 Correct 4 ms 14940 KB Output is correct
4 Correct 3 ms 14940 KB Output is correct
5 Correct 3 ms 14940 KB Output is correct
6 Correct 4 ms 14940 KB Output is correct
7 Correct 4 ms 14984 KB Output is correct
8 Correct 4 ms 14940 KB Output is correct
9 Correct 5 ms 15196 KB Output is correct
10 Correct 3 ms 14940 KB Output is correct
11 Correct 12 ms 17512 KB Output is correct
12 Correct 22 ms 19292 KB Output is correct
13 Correct 37 ms 28588 KB Output is correct
14 Correct 68 ms 31568 KB Output is correct
15 Correct 84 ms 31864 KB Output is correct
16 Correct 61 ms 27540 KB Output is correct
17 Correct 56 ms 26448 KB Output is correct
18 Correct 22 ms 19284 KB Output is correct
19 Correct 71 ms 31568 KB Output is correct
20 Correct 88 ms 31812 KB Output is correct
21 Correct 62 ms 27632 KB Output is correct
22 Correct 56 ms 26272 KB Output is correct
23 Correct 75 ms 32832 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 14940 KB Output is correct
2 Correct 5 ms 14940 KB Output is correct
3 Correct 4 ms 14940 KB Output is correct
4 Correct 3 ms 14940 KB Output is correct
5 Correct 3 ms 14940 KB Output is correct
6 Correct 4 ms 14940 KB Output is correct
7 Correct 4 ms 14984 KB Output is correct
8 Correct 4 ms 14940 KB Output is correct
9 Correct 5 ms 15196 KB Output is correct
10 Correct 3 ms 14940 KB Output is correct
11 Correct 12 ms 17512 KB Output is correct
12 Correct 22 ms 19292 KB Output is correct
13 Correct 37 ms 28588 KB Output is correct
14 Correct 68 ms 31568 KB Output is correct
15 Correct 84 ms 31864 KB Output is correct
16 Correct 61 ms 27540 KB Output is correct
17 Correct 56 ms 26448 KB Output is correct
18 Correct 22 ms 19284 KB Output is correct
19 Correct 71 ms 31568 KB Output is correct
20 Correct 88 ms 31812 KB Output is correct
21 Correct 62 ms 27632 KB Output is correct
22 Correct 56 ms 26272 KB Output is correct
23 Correct 75 ms 32832 KB Output is correct
24 Correct 4 ms 14936 KB Output is correct
25 Correct 96 ms 17500 KB Output is correct
26 Correct 132 ms 19432 KB Output is correct
27 Correct 2037 ms 29024 KB Output is correct
28 Correct 873 ms 32340 KB Output is correct
29 Correct 2208 ms 32636 KB Output is correct
30 Correct 1288 ms 28288 KB Output is correct
31 Correct 1262 ms 27008 KB Output is correct
32 Correct 112 ms 19548 KB Output is correct
33 Correct 879 ms 32472 KB Output is correct
34 Correct 2200 ms 32620 KB Output is correct
35 Correct 1384 ms 28500 KB Output is correct
36 Correct 1262 ms 26988 KB Output is correct
37 Correct 715 ms 33776 KB Output is correct
38 Correct 1788 ms 38364 KB Output is correct