Submission #949096

# Submission time Handle Problem Language Result Execution time Memory
949096 2024-03-19T00:48:00 Z MilosMilutinovic IOI Fever (JOI21_fever) C++14
57 / 100
512 ms 54216 KB
#include<bits/stdc++.h>
 
#define pb push_back
#define fi first
#define se second
#define mp make_pair
 
using namespace std;
 
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef long double ld;
 
template <typename T> bool chkmin(T &x,T y){return x>y?x=y,1:0;}
template <typename T> bool chkmax(T &x,T y){return x<y?x=y,1:0;}
 
ll readint(){
    ll x=0,f=1; char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

#define info pair<pair<ll,int>,pair<ll,int>>
 
const int dx[]={1,0,-1,0};
const int dy[]={0,1,0,-1};
int n,tot;
int d1[100005],d2[100005],root[2][100005],lch[10000005],rch[10000005],pos[2][100005];
ll x[100005],y[100005],dir[100005];
bool vis[100005];
pair<ll,int> mn[10000005][2],mx[10000005][2];

void change(int&id,int t,int l,int r,int ql,int qr,info v){
	if(!id) id=++tot,mn[id][t]=mp((ll)1e18,0),mx[id][t]=mp((ll)-1e18,0);
	if(ql<=l&&r<=qr){
		mn[id][t]=min(mn[id][t],v.fi);
		mx[id][t]=max(mx[id][t],v.se);
		return;
	}
	int mid=(l+r)/2;
	if(qr<=mid) change(lch[id],t,l,mid,ql,qr,v);
	else if(ql>mid) change(rch[id],t,mid+1,r,ql,qr,v);
	else change(lch[id],t,l,mid,ql,qr,v),change(rch[id],t,mid+1,r,ql,qr,v);
}

pair<ll,int> query(int id,int t,int l,int r,int i,int v){
	if(!id) return mp((ll)1e18,0);
	if(l==r) return min(mp(mn[id][t].fi-v,mn[id][t].se),mp(v-mx[id][t].fi,mx[id][t].se));
	int mid=(l+r)/2;
	pair<ll,int> bst;
	if(i<=mid) bst=query(lch[id],t,l,mid,i,v);
	else bst=query(rch[id],t,mid+1,r,i,v);
	bst=min(bst,min(mp(mn[id][t].fi-v,mn[id][t].se),mp(v-mx[id][t].fi,mx[id][t].se)));
	return bst;
}
 
int main(){
	n=readint();
	for(int i=1;i<=n;i++) x[i]=readint(),y[i]=readint(),x[i]*=2,y[i]*=2;
	vector<int> xs1,xs2;
	for(int i=1;i<=n;i++){
		xs1.pb(x[i]+y[i]);
		xs2.pb(x[i]-y[i]);
	}
	sort(xs1.begin(),xs1.end());
	xs1.erase(unique(xs1.begin(),xs1.end()),xs1.end());
	sort(xs2.begin(),xs2.end());
	xs2.erase(unique(xs2.begin(),xs2.end()),xs2.end());
	int sz1=(int)xs1.size(),sz2=(int)xs2.size();
	vector<set<pii>> st1(sz1),st2(sz2);
	vector<vector<int>> ids1(sz1),ids2(sz2);
	for(int i=1;i<=n;i++){
		d1[i]=(int)(lower_bound(xs1.begin(),xs1.end(),x[i]+y[i])-xs1.begin());
		d2[i]=(int)(lower_bound(xs2.begin(),xs2.end(),x[i]-y[i])-xs2.begin());
		st1[d1[i]].emplace(x[i],i);
		st2[d2[i]].emplace(x[i],i);
		ids1[d1[i]].pb(i);
		ids2[d2[i]].pb(i);
	}
	for(int i=0;i<sz1;i++){
		sort(ids1[i].begin(),ids1[i].end(),[&](int i,int j){return x[i]<x[j];});
		for(int j=0;j<(int)ids1[i].size();j++){
			pos[0][ids1[i][j]]=j;
		}
	}
	for(int i=0;i<sz2;i++){
		sort(ids2[i].begin(),ids2[i].end(),[&](int i,int j){return x[i]<x[j];});
		for(int j=0;j<(int)ids2[i].size();j++){
			pos[1][ids2[i][j]]=j;
		}
	}
	int ans=0;
	for(int d=0;d<4;d++){
		for(int i=1;i<=n;i++) vis[i]=false;
		dir[1]=d;
		priority_queue<pair<ll,pii>> pq;
		pq.push(mp(0,mp(1,d)));
		for(int i=1;i<=n;i++){
			st1[d1[i]].emplace(x[i],i);
			st2[d2[i]].emplace(x[i],i);
		}
		while(tot){
			for(int j=0;j<2;j++){
				mn[tot][j]=mp((ll)1e18,0);
				mx[tot][j]=mp((ll)-1e18,0);
			}
			lch[tot]=0;
			rch[tot]=0;
			tot--;
		}
		for(int j=0;j<2;j++){
			for(int i=0;i<sz1;i++) root[j][i]=0;
			for(int i=0;i<sz2;i++) root[j][i]=0;
		}
		auto upd=[&](int idx){
			if(vis[idx]) return;
			pair<ll,int> bst=min(query(root[0][d1[idx]],0,0,ids1[d1[idx]].size()-1,pos[0][idx],x[idx]),query(root[1][d2[idx]],1,0,ids2[d2[idx]].size()-1,pos[1][idx],x[idx]));
			if(bst.fi<(ll)1e17){
				pq.push(mp(-bst.fi,mp(idx,bst.se)));
			}
			return;
		};
		while(!pq.empty()){
			ll t=-pq.top().fi;
			int i=pq.top().se.fi;
			int dd=pq.top().se.se;
			pq.pop();
			if(vis[i]) continue;
			dir[i]=dd;
			vis[i]=true;
			auto it1=st1[d1[i]].lower_bound(mp(x[i],i));
			if(it1!=st1[d1[i]].begin()) upd(prev(it1)->se);
			if(it1!=prev(st1[d1[i]].end())) upd(next(it1)->se);
			st1[d1[i]].erase(it1);
			auto it2=st2[d2[i]].lower_bound(mp(x[i],i));
			if(it2!=st2[d2[i]].begin()) upd(prev(it2)->se);
			if(it2!=prev(st2[d2[i]].end())) upd(next(it2)->se);
			st2[d2[i]].erase(it2);
			if(dir[i]==0){
				// up
				{
					int low=0,high=ids1[d1[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[i]-x[ids1[d1[i]][mid]]>=t) p=mid,low=mid+1;
						else high=mid-1;
					}
					if(p!=-1){
						change(root[0][d1[i]],0,0,ids1[d1[i]].size()-1,0,p,mp(mp(x[i],2),mp((ll)-1e18,0)));
						auto it=st1[d1[i]].lower_bound(mp(x[ids1[d1[i]][p]],ids1[d1[i]][p]+1));
						if(it!=st1[d1[i]].begin()) upd(prev(it)->se);
					}
				}
				{
					int low=0,high=ids2[d2[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[ids2[d2[i]][mid]]-x[i]>=t) p=mid,high=mid-1; 
						else low=mid+1;
					}
					if(p<(int)ids2[d2[i]].size()){
						change(root[1][d2[i]],1,0,ids2[d2[i]].size()-1,p,ids2[d2[i]].size()-1,mp(mp((ll)1e18,0),mp(x[i],3)));
						auto it=st2[d2[i]].lower_bound(mp(x[ids2[d2[i]][p]],ids2[d2[i]][p]));
						if(it!=st2[d2[i]].end()) upd(it->se);
					}
				}
			}
			if(dir[i]==1){
				// down
				{
					int low=0,high=ids1[d1[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[ids1[d1[i]][mid]]-x[i]>=t) p=mid,high=mid-1;
						else low=mid+1;
					}
					if(p<(int)ids1[d1[i]].size()){
						change(root[0][d1[i]],0,0,ids1[d1[i]].size()-1,p,ids1[d1[i]].size()-1,mp(mp((ll)1e18,2),mp(x[i],3)));
						auto it=st1[d1[i]].lower_bound(mp(x[ids1[d1[i]][p]],ids1[d1[i]][p]));
						if(it!=st1[d1[i]].end()) upd(it->se);
					}
				}
				{
					int low=0,high=ids2[d2[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[i]-x[ids2[d2[i]][mid]]>=t) p=mid,low=mid+1; 
						else high=mid-1;
					}
					if(p!=-1){
						change(root[1][d2[i]],1,0,ids2[d2[i]].size()-1,0,p,mp(mp(x[i],2),mp((ll)-1e18,3)));
						auto it=st2[d2[i]].lower_bound(mp(x[ids2[d2[i]][p]],ids2[d2[i]][p]+1));
						if(it!=st2[d2[i]].begin()) upd(prev(it)->se);
					}
				}
			}
			if(dir[i]==2){
				// right
				{
					int low=0,high=ids1[d1[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[ids1[d1[i]][mid]]-x[i]>=t) p=mid,high=mid-1;
						else low=mid+1;
					}
					if(p<(int)ids1[d1[i]].size()){
						change(root[0][d1[i]],0,0,ids1[d1[i]].size()-1,p,ids1[d1[i]].size()-1,mp(mp((ll)1e18,2),mp(x[i],0)));
						auto it=st1[d1[i]].lower_bound(mp(x[ids1[d1[i]][p]],ids1[d1[i]][p]));
						if(it!=st1[d1[i]].end()) upd(it->se);
					}
				}
				{
					int low=0,high=ids2[d2[i]].size()-1,p=high+1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[ids2[d2[i]][mid]]-x[i]>=t) p=mid,high=mid-1;
						else low=mid+1;
					}
					if(p<(int)ids2[d2[i]].size()){
						change(root[1][d2[i]],1,0,ids2[d2[i]].size()-1,p,ids2[d2[i]].size()-1,mp(mp((ll)1e18,0),mp(x[i],1)));
						auto it=st2[d2[i]].lower_bound(mp(x[ids2[d2[i]][p]],ids2[d2[i]][p]));
						if(it!=st2[d2[i]].end()) upd(it->se);
					}
				}
			}
			if(dir[i]==3){
				// left
				{
					int low=0,high=ids1[d1[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[i]-x[ids1[d1[i]][mid]]>=t) p=mid,low=mid+1;
						else high=mid-1;
					}
					if(p!=-1){
						change(root[0][d1[i]],0,0,ids1[d1[i]].size()-1,0,p,mp(mp(x[i],1),mp((ll)-1e18,0)));
						auto it=st1[d1[i]].lower_bound(mp(x[ids1[d1[i]][p]],ids1[d1[i]][p]+1));
						if(it!=st1[d1[i]].begin()) upd(prev(it)->se);
					}
				}
				{
					int low=0,high=ids2[d2[i]].size()-1,p=-1;
					while(low<=high){
						int mid=(low+high)/2;
						if(x[i]-x[ids2[d2[i]][mid]]>=t) p=mid,low=mid+1;
						else high=mid-1;
					}
					if(p!=-1){
						change(root[1][d2[i]],1,0,ids2[d2[i]].size()-1,0,p,mp(mp(x[i],0),mp((ll)-1e18,3)));
						auto it=st2[d2[i]].lower_bound(mp(x[ids2[d2[i]][p]],ids2[d2[i]][p]+1));
						if(it!=st2[d2[i]].begin()) upd(prev(it)->se);
					}
				}
			}
		}
		int cnt=0;
		for(int i=1;i<=n;i++) cnt+=vis[i];
		ans=max(ans,cnt);
	}
	printf("%d\n",ans);
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 10592 KB Output is correct
2 Correct 1 ms 10588 KB Output is correct
3 Correct 2 ms 8540 KB Output is correct
4 Correct 1 ms 8540 KB Output is correct
5 Correct 1 ms 10588 KB Output is correct
6 Correct 1 ms 10584 KB Output is correct
7 Correct 2 ms 8540 KB Output is correct
8 Correct 1 ms 10588 KB Output is correct
9 Correct 2 ms 10588 KB Output is correct
10 Correct 2 ms 10588 KB Output is correct
11 Correct 1 ms 8540 KB Output is correct
12 Correct 2 ms 10840 KB Output is correct
13 Correct 2 ms 10592 KB Output is correct
14 Correct 2 ms 10588 KB Output is correct
15 Correct 2 ms 10588 KB Output is correct
16 Correct 2 ms 8540 KB Output is correct
17 Correct 2 ms 8540 KB Output is correct
18 Correct 1 ms 10588 KB Output is correct
19 Correct 2 ms 10596 KB Output is correct
20 Correct 2 ms 10688 KB Output is correct
21 Correct 1 ms 10588 KB Output is correct
22 Correct 1 ms 10592 KB Output is correct
23 Correct 1 ms 10684 KB Output is correct
24 Correct 1 ms 8544 KB Output is correct
25 Correct 1 ms 8544 KB Output is correct
26 Correct 1 ms 8544 KB Output is correct
27 Correct 1 ms 8544 KB Output is correct
28 Correct 1 ms 8544 KB Output is correct
29 Correct 1 ms 8548 KB Output is correct
30 Correct 1 ms 8540 KB Output is correct
31 Correct 1 ms 8544 KB Output is correct
32 Correct 1 ms 8544 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 10592 KB Output is correct
2 Correct 1 ms 10588 KB Output is correct
3 Correct 2 ms 8540 KB Output is correct
4 Correct 1 ms 8540 KB Output is correct
5 Correct 1 ms 10588 KB Output is correct
6 Correct 1 ms 10584 KB Output is correct
7 Correct 2 ms 8540 KB Output is correct
8 Correct 1 ms 10588 KB Output is correct
9 Correct 2 ms 10588 KB Output is correct
10 Correct 2 ms 10588 KB Output is correct
11 Correct 1 ms 8540 KB Output is correct
12 Correct 2 ms 10840 KB Output is correct
13 Correct 2 ms 10592 KB Output is correct
14 Correct 2 ms 10588 KB Output is correct
15 Correct 2 ms 10588 KB Output is correct
16 Correct 2 ms 8540 KB Output is correct
17 Correct 2 ms 8540 KB Output is correct
18 Correct 1 ms 10588 KB Output is correct
19 Correct 2 ms 10596 KB Output is correct
20 Correct 2 ms 10688 KB Output is correct
21 Correct 1 ms 10588 KB Output is correct
22 Correct 1 ms 10592 KB Output is correct
23 Correct 1 ms 10684 KB Output is correct
24 Correct 1 ms 8544 KB Output is correct
25 Correct 1 ms 8544 KB Output is correct
26 Correct 1 ms 8544 KB Output is correct
27 Correct 1 ms 8544 KB Output is correct
28 Correct 1 ms 8544 KB Output is correct
29 Correct 1 ms 8548 KB Output is correct
30 Correct 1 ms 8540 KB Output is correct
31 Correct 1 ms 8544 KB Output is correct
32 Correct 1 ms 8544 KB Output is correct
33 Correct 1 ms 10592 KB Output is correct
34 Correct 1 ms 8540 KB Output is correct
35 Correct 1 ms 10588 KB Output is correct
36 Correct 2 ms 10788 KB Output is correct
37 Correct 1 ms 8540 KB Output is correct
38 Correct 1 ms 8540 KB Output is correct
39 Correct 1 ms 8540 KB Output is correct
40 Correct 1 ms 8540 KB Output is correct
41 Correct 2 ms 8540 KB Output is correct
42 Correct 2 ms 8540 KB Output is correct
43 Correct 1 ms 8540 KB Output is correct
44 Correct 1 ms 8540 KB Output is correct
45 Correct 1 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 8540 KB Output is correct
2 Correct 1 ms 8540 KB Output is correct
3 Correct 2 ms 10588 KB Output is correct
4 Correct 2 ms 8540 KB Output is correct
5 Correct 2 ms 10588 KB Output is correct
6 Correct 1 ms 8536 KB Output is correct
7 Correct 1 ms 8540 KB Output is correct
8 Correct 1 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 10592 KB Output is correct
2 Correct 1 ms 10588 KB Output is correct
3 Correct 2 ms 8540 KB Output is correct
4 Correct 1 ms 8540 KB Output is correct
5 Correct 1 ms 10588 KB Output is correct
6 Correct 1 ms 10584 KB Output is correct
7 Correct 2 ms 8540 KB Output is correct
8 Correct 1 ms 10588 KB Output is correct
9 Correct 2 ms 10588 KB Output is correct
10 Correct 2 ms 10588 KB Output is correct
11 Correct 1 ms 8540 KB Output is correct
12 Correct 2 ms 10840 KB Output is correct
13 Correct 2 ms 10592 KB Output is correct
14 Correct 2 ms 10588 KB Output is correct
15 Correct 2 ms 10588 KB Output is correct
16 Correct 2 ms 8540 KB Output is correct
17 Correct 2 ms 8540 KB Output is correct
18 Correct 1 ms 10588 KB Output is correct
19 Correct 2 ms 10596 KB Output is correct
20 Correct 2 ms 10688 KB Output is correct
21 Correct 1 ms 10588 KB Output is correct
22 Correct 1 ms 10592 KB Output is correct
23 Correct 1 ms 10684 KB Output is correct
24 Correct 1 ms 8544 KB Output is correct
25 Correct 1 ms 8544 KB Output is correct
26 Correct 1 ms 8544 KB Output is correct
27 Correct 1 ms 8544 KB Output is correct
28 Correct 1 ms 8544 KB Output is correct
29 Correct 1 ms 8548 KB Output is correct
30 Correct 1 ms 8540 KB Output is correct
31 Correct 1 ms 8544 KB Output is correct
32 Correct 1 ms 8544 KB Output is correct
33 Correct 1 ms 10592 KB Output is correct
34 Correct 1 ms 8540 KB Output is correct
35 Correct 1 ms 10588 KB Output is correct
36 Correct 2 ms 10788 KB Output is correct
37 Correct 1 ms 8540 KB Output is correct
38 Correct 1 ms 8540 KB Output is correct
39 Correct 1 ms 8540 KB Output is correct
40 Correct 1 ms 8540 KB Output is correct
41 Correct 2 ms 8540 KB Output is correct
42 Correct 2 ms 8540 KB Output is correct
43 Correct 1 ms 8540 KB Output is correct
44 Correct 1 ms 8540 KB Output is correct
45 Correct 1 ms 8540 KB Output is correct
46 Correct 2 ms 8540 KB Output is correct
47 Correct 1 ms 8540 KB Output is correct
48 Correct 2 ms 10588 KB Output is correct
49 Correct 2 ms 8540 KB Output is correct
50 Correct 2 ms 10588 KB Output is correct
51 Correct 1 ms 8536 KB Output is correct
52 Correct 1 ms 8540 KB Output is correct
53 Correct 1 ms 8540 KB Output is correct
54 Correct 2 ms 10588 KB Output is correct
55 Correct 2 ms 8540 KB Output is correct
56 Correct 1 ms 10588 KB Output is correct
57 Correct 2 ms 10588 KB Output is correct
58 Correct 2 ms 8540 KB Output is correct
59 Correct 2 ms 8540 KB Output is correct
60 Correct 2 ms 8540 KB Output is correct
61 Correct 2 ms 10588 KB Output is correct
62 Correct 2 ms 8540 KB Output is correct
63 Correct 1 ms 8536 KB Output is correct
64 Correct 2 ms 8536 KB Output is correct
65 Correct 2 ms 8536 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 10592 KB Output is correct
2 Correct 1 ms 10588 KB Output is correct
3 Correct 2 ms 8540 KB Output is correct
4 Correct 1 ms 8540 KB Output is correct
5 Correct 1 ms 10588 KB Output is correct
6 Correct 1 ms 10584 KB Output is correct
7 Correct 2 ms 8540 KB Output is correct
8 Correct 1 ms 10588 KB Output is correct
9 Correct 2 ms 10588 KB Output is correct
10 Correct 2 ms 10588 KB Output is correct
11 Correct 1 ms 8540 KB Output is correct
12 Correct 2 ms 10840 KB Output is correct
13 Correct 2 ms 10592 KB Output is correct
14 Correct 2 ms 10588 KB Output is correct
15 Correct 2 ms 10588 KB Output is correct
16 Correct 2 ms 8540 KB Output is correct
17 Correct 2 ms 8540 KB Output is correct
18 Correct 1 ms 10588 KB Output is correct
19 Correct 2 ms 10596 KB Output is correct
20 Correct 2 ms 10688 KB Output is correct
21 Correct 1 ms 10588 KB Output is correct
22 Correct 1 ms 10592 KB Output is correct
23 Correct 1 ms 10684 KB Output is correct
24 Correct 1 ms 8544 KB Output is correct
25 Correct 1 ms 8544 KB Output is correct
26 Correct 1 ms 8544 KB Output is correct
27 Correct 1 ms 8544 KB Output is correct
28 Correct 1 ms 8544 KB Output is correct
29 Correct 1 ms 8548 KB Output is correct
30 Correct 1 ms 8540 KB Output is correct
31 Correct 1 ms 8544 KB Output is correct
32 Correct 1 ms 8544 KB Output is correct
33 Correct 1 ms 10592 KB Output is correct
34 Correct 1 ms 8540 KB Output is correct
35 Correct 1 ms 10588 KB Output is correct
36 Correct 2 ms 10788 KB Output is correct
37 Correct 1 ms 8540 KB Output is correct
38 Correct 1 ms 8540 KB Output is correct
39 Correct 1 ms 8540 KB Output is correct
40 Correct 1 ms 8540 KB Output is correct
41 Correct 2 ms 8540 KB Output is correct
42 Correct 2 ms 8540 KB Output is correct
43 Correct 1 ms 8540 KB Output is correct
44 Correct 1 ms 8540 KB Output is correct
45 Correct 1 ms 8540 KB Output is correct
46 Correct 2 ms 8540 KB Output is correct
47 Correct 1 ms 8540 KB Output is correct
48 Correct 2 ms 10588 KB Output is correct
49 Correct 2 ms 8540 KB Output is correct
50 Correct 2 ms 10588 KB Output is correct
51 Correct 1 ms 8536 KB Output is correct
52 Correct 1 ms 8540 KB Output is correct
53 Correct 1 ms 8540 KB Output is correct
54 Correct 2 ms 10588 KB Output is correct
55 Correct 2 ms 8540 KB Output is correct
56 Correct 1 ms 10588 KB Output is correct
57 Correct 2 ms 10588 KB Output is correct
58 Correct 2 ms 8540 KB Output is correct
59 Correct 2 ms 8540 KB Output is correct
60 Correct 2 ms 8540 KB Output is correct
61 Correct 2 ms 10588 KB Output is correct
62 Correct 2 ms 8540 KB Output is correct
63 Correct 1 ms 8536 KB Output is correct
64 Correct 2 ms 8536 KB Output is correct
65 Correct 2 ms 8536 KB Output is correct
66 Correct 4 ms 11356 KB Output is correct
67 Correct 4 ms 11356 KB Output is correct
68 Correct 4 ms 11612 KB Output is correct
69 Incorrect 11 ms 9048 KB Output isn't correct
70 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 10592 KB Output is correct
2 Correct 1 ms 10588 KB Output is correct
3 Correct 2 ms 8540 KB Output is correct
4 Correct 1 ms 8540 KB Output is correct
5 Correct 1 ms 10588 KB Output is correct
6 Correct 1 ms 10584 KB Output is correct
7 Correct 2 ms 8540 KB Output is correct
8 Correct 1 ms 10588 KB Output is correct
9 Correct 2 ms 10588 KB Output is correct
10 Correct 2 ms 10588 KB Output is correct
11 Correct 1 ms 8540 KB Output is correct
12 Correct 2 ms 10840 KB Output is correct
13 Correct 2 ms 10592 KB Output is correct
14 Correct 2 ms 10588 KB Output is correct
15 Correct 2 ms 10588 KB Output is correct
16 Correct 2 ms 8540 KB Output is correct
17 Correct 2 ms 8540 KB Output is correct
18 Correct 1 ms 10588 KB Output is correct
19 Correct 2 ms 10596 KB Output is correct
20 Correct 2 ms 10688 KB Output is correct
21 Correct 1 ms 10588 KB Output is correct
22 Correct 1 ms 10592 KB Output is correct
23 Correct 1 ms 10684 KB Output is correct
24 Correct 1 ms 8544 KB Output is correct
25 Correct 1 ms 8544 KB Output is correct
26 Correct 1 ms 8544 KB Output is correct
27 Correct 1 ms 8544 KB Output is correct
28 Correct 1 ms 8544 KB Output is correct
29 Correct 1 ms 8548 KB Output is correct
30 Correct 1 ms 8540 KB Output is correct
31 Correct 1 ms 8544 KB Output is correct
32 Correct 1 ms 8544 KB Output is correct
33 Correct 1 ms 10592 KB Output is correct
34 Correct 1 ms 8540 KB Output is correct
35 Correct 1 ms 10588 KB Output is correct
36 Correct 2 ms 10788 KB Output is correct
37 Correct 1 ms 8540 KB Output is correct
38 Correct 1 ms 8540 KB Output is correct
39 Correct 1 ms 8540 KB Output is correct
40 Correct 1 ms 8540 KB Output is correct
41 Correct 2 ms 8540 KB Output is correct
42 Correct 2 ms 8540 KB Output is correct
43 Correct 1 ms 8540 KB Output is correct
44 Correct 1 ms 8540 KB Output is correct
45 Correct 1 ms 8540 KB Output is correct
46 Correct 2 ms 8540 KB Output is correct
47 Correct 1 ms 8540 KB Output is correct
48 Correct 2 ms 10588 KB Output is correct
49 Correct 2 ms 8540 KB Output is correct
50 Correct 2 ms 10588 KB Output is correct
51 Correct 1 ms 8536 KB Output is correct
52 Correct 1 ms 8540 KB Output is correct
53 Correct 1 ms 8540 KB Output is correct
54 Correct 2 ms 10588 KB Output is correct
55 Correct 2 ms 8540 KB Output is correct
56 Correct 1 ms 10588 KB Output is correct
57 Correct 2 ms 10588 KB Output is correct
58 Correct 2 ms 8540 KB Output is correct
59 Correct 2 ms 8540 KB Output is correct
60 Correct 2 ms 8540 KB Output is correct
61 Correct 2 ms 10588 KB Output is correct
62 Correct 2 ms 8540 KB Output is correct
63 Correct 1 ms 8536 KB Output is correct
64 Correct 2 ms 8536 KB Output is correct
65 Correct 2 ms 8536 KB Output is correct
66 Correct 154 ms 30520 KB Output is correct
67 Correct 187 ms 36104 KB Output is correct
68 Correct 169 ms 44228 KB Output is correct
69 Correct 361 ms 31944 KB Output is correct
70 Correct 512 ms 32380 KB Output is correct
71 Correct 191 ms 42188 KB Output is correct
72 Correct 207 ms 41372 KB Output is correct
73 Correct 285 ms 32276 KB Output is correct
74 Correct 180 ms 42272 KB Output is correct
75 Correct 215 ms 41508 KB Output is correct
76 Correct 305 ms 34588 KB Output is correct
77 Correct 187 ms 42432 KB Output is correct
78 Correct 268 ms 54152 KB Output is correct
79 Correct 251 ms 54216 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 10592 KB Output is correct
2 Correct 1 ms 10588 KB Output is correct
3 Correct 2 ms 8540 KB Output is correct
4 Correct 1 ms 8540 KB Output is correct
5 Correct 1 ms 10588 KB Output is correct
6 Correct 1 ms 10584 KB Output is correct
7 Correct 2 ms 8540 KB Output is correct
8 Correct 1 ms 10588 KB Output is correct
9 Correct 2 ms 10588 KB Output is correct
10 Correct 2 ms 10588 KB Output is correct
11 Correct 1 ms 8540 KB Output is correct
12 Correct 2 ms 10840 KB Output is correct
13 Correct 2 ms 10592 KB Output is correct
14 Correct 2 ms 10588 KB Output is correct
15 Correct 2 ms 10588 KB Output is correct
16 Correct 2 ms 8540 KB Output is correct
17 Correct 2 ms 8540 KB Output is correct
18 Correct 1 ms 10588 KB Output is correct
19 Correct 2 ms 10596 KB Output is correct
20 Correct 2 ms 10688 KB Output is correct
21 Correct 1 ms 10588 KB Output is correct
22 Correct 1 ms 10592 KB Output is correct
23 Correct 1 ms 10684 KB Output is correct
24 Correct 1 ms 8544 KB Output is correct
25 Correct 1 ms 8544 KB Output is correct
26 Correct 1 ms 8544 KB Output is correct
27 Correct 1 ms 8544 KB Output is correct
28 Correct 1 ms 8544 KB Output is correct
29 Correct 1 ms 8548 KB Output is correct
30 Correct 1 ms 8540 KB Output is correct
31 Correct 1 ms 8544 KB Output is correct
32 Correct 1 ms 8544 KB Output is correct
33 Correct 1 ms 10592 KB Output is correct
34 Correct 1 ms 8540 KB Output is correct
35 Correct 1 ms 10588 KB Output is correct
36 Correct 2 ms 10788 KB Output is correct
37 Correct 1 ms 8540 KB Output is correct
38 Correct 1 ms 8540 KB Output is correct
39 Correct 1 ms 8540 KB Output is correct
40 Correct 1 ms 8540 KB Output is correct
41 Correct 2 ms 8540 KB Output is correct
42 Correct 2 ms 8540 KB Output is correct
43 Correct 1 ms 8540 KB Output is correct
44 Correct 1 ms 8540 KB Output is correct
45 Correct 1 ms 8540 KB Output is correct
46 Correct 2 ms 8540 KB Output is correct
47 Correct 1 ms 8540 KB Output is correct
48 Correct 2 ms 10588 KB Output is correct
49 Correct 2 ms 8540 KB Output is correct
50 Correct 2 ms 10588 KB Output is correct
51 Correct 1 ms 8536 KB Output is correct
52 Correct 1 ms 8540 KB Output is correct
53 Correct 1 ms 8540 KB Output is correct
54 Correct 2 ms 10588 KB Output is correct
55 Correct 2 ms 8540 KB Output is correct
56 Correct 1 ms 10588 KB Output is correct
57 Correct 2 ms 10588 KB Output is correct
58 Correct 2 ms 8540 KB Output is correct
59 Correct 2 ms 8540 KB Output is correct
60 Correct 2 ms 8540 KB Output is correct
61 Correct 2 ms 10588 KB Output is correct
62 Correct 2 ms 8540 KB Output is correct
63 Correct 1 ms 8536 KB Output is correct
64 Correct 2 ms 8536 KB Output is correct
65 Correct 2 ms 8536 KB Output is correct
66 Correct 4 ms 11356 KB Output is correct
67 Correct 4 ms 11356 KB Output is correct
68 Correct 4 ms 11612 KB Output is correct
69 Incorrect 11 ms 9048 KB Output isn't correct
70 Halted 0 ms 0 KB -