#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl
#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)
template<typename T>
void amin(T &a, T b) {
a = min(a,b);
}
template<typename T>
void amax(T &a, T b) {
a = max(a,b);
}
#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif
/*
refs:
edi
https://youtu.be/Tjv78ZThV5c
(solution inspired by these sources)
build backwards from the dth to the 0th dimension
when we are at the ith dimension (i < d), do the following:
connect to the root of the (i+1)th tree
pick a root for the ith tree
(for tree 0, root = 1)
we only care about the root's state (W/L), not the exact node
maintain dp[i][W/L] = #of ways to make the root of ith tree W/L after fixing all teleporters in trees >= i
for each root, calculate the #of nodes s.t when their state changes from L --> W, the state of the root is W
naive calculation = O(n^2) (n dfs calls)
optimized = O(n) (rerooting dp)
these values can be used to transition from dp[i][W/L] to dp[i-1][W/L]
transitions can be sped up using matrix expo
need some care when handling 0th tree (because root = 1 is fixed, can't pick arbitrary root)
*/
const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;
struct Matrix {
vector<vector<ll>> a;
int n, m;
Matrix() {
}
Matrix(int row, int col) {
n = row, m = col;
a = vector<vector<ll>>(row, vector<ll>(col));
}
Matrix operator*(const Matrix &mat2) {
int n2 = mat2.n, m2 = mat2.m;
Matrix res(n, m2);
rep(i, n) {
rep(j, m2) {
rep(k, m) {
ll temp = (a[i][k] * mat2.a[k][j]) % MOD;
res.a[i][j] = (res.a[i][j] + temp) % MOD;
}
}
}
return res;
}
void exp(ll b) {
Matrix res(n, m);
Matrix curr = *this;
rep(i, n) res.a[i][i] = 1;
while (b) {
if (b & 1) res = res * curr;
curr = curr * curr;
b /= 2;
}
a = res.a;
}
};
vector<ll> adj[N];
vector<ll> dp1(N), dp2(N);
void dfs1(ll u, ll p){
dp1[u] = 0;
trav(v,adj[u]){
if(v == p) conts;
dfs1(v,u);
dp1[u] += (dp1[v] == 0);
}
}
void dfs2(ll u, ll p){
trav(v,adj[u]){
if(v == p) conts;
ll val = dp2[u]-(dp1[v] == 0);
dp2[v] += (val == 0);
dfs2(v,u);
}
}
ll dp3[N][2], dp4[N][2];
vector<ll> dp5(N);
vector<ll> win_cnt(N), lose_cnt(N);
ll win_sum[N][2], lose_sum[N][2];
void dfs3(ll u, ll p){
dp3[u][0] = 1;
trav(v,adj[u]){
if(v == p) conts;
dfs3(v,u);
}
vector<ll> win,lose;
trav(v,adj[u]){
if(v == p) conts;
if(dp1[v]){
win.pb(v);
win_cnt[u]++;
rep(j,2){
win_sum[u][j] += dp3[v][j];
}
}
else{
lose.pb(v);
lose_cnt[u]++;
rep(j,2){
lose_sum[u][j] += dp3[v][j];
}
}
}
if(sz(lose) == 0){
rep(j,2){
dp3[u][j] += win_sum[u][j^1];
}
}
else if(sz(lose) == 1){
rep(j,2){
dp3[u][j] += lose_sum[u][j^1];
}
}
rep(j,2){
dp4[u][j] = dp3[u][j];
}
}
void dfs4(ll u, ll p){
trav(v,adj[u]){
if(v == p) conts;
ll win = win_cnt[u], lose = lose_cnt[u];
array<ll,2> wsum,lsum;
wsum.fill(0), lsum.fill(0);
rep(j,2){
wsum[j] = win_sum[u][j];
lsum[j] = lose_sum[u][j];
}
if(dp1[v]){
win--;
rep(j,2){
wsum[j] -= dp3[v][j];
}
}
else{
lose--;
rep(j,2){
lsum[j] -= dp3[v][j];
}
}
array<ll,2> dpu;
dpu.fill(0);
dpu[0] = 1;
if(lose == 0){
rep(j,2){
dpu[j] += wsum[j^1];
}
}
else if(lose == 1){
rep(j,2){
dpu[j] += lsum[j^1];
}
}
ll val = dp2[u];
val -= (dp1[v] == 0);
if(val){
win_cnt[v]++;
rep(j,2){
win_sum[v][j] += dpu[j];
}
}
else{
lose_cnt[v]++;
rep(j,2){
lose_sum[v][j] += dpu[j];
}
}
dp4[v][0] = 1, dp4[v][1] = 0;
if(lose_cnt[v] == 0){
rep(j,2){
dp4[v][j] += win_sum[v][j^1];
}
}
else if(lose_cnt[v] == 1){
rep(j,2){
dp4[v][j] += lose_sum[v][j^1];
}
}
dfs4(v,u);
}
}
void dfs5(ll u, ll p, ll depth, ll r){
if(!dp1[u]){
ll val = 1;
if(depth&1) val = 0;
dp5[r] -= dp2[r];
dp5[r] += val;
}
vector<ll> win,lose;
trav(v,adj[u]){
if(v == p) conts;
if(dp1[v]) win.pb(v);
else lose.pb(v);
}
if(sz(lose) == 0){
trav(v,win){
dfs5(v,u,depth+1,r);
}
}
else if(sz(lose) == 1){
dfs5(lose[0],u,depth+1,r);
}
}
void solve(int test_case)
{
ll n,d; cin >> n >> d;
rep1(i,n-1){
ll u,v; cin >> u >> v;
adj[u].pb(v), adj[v].pb(u);
}
dfs1(1,-1);
rep1(i,n) dp2[i] = dp1[i];
dfs2(1,-1);
dfs3(1,-1);
dfs4(1,-1);
rep1(i,n){
amin(dp1[i],1ll);
amin(dp2[i],1ll);
}
rep1(i,n){
dp5[i] = n*dp2[i];
dp5[i] -= (dp4[i][0]+dp4[i][1])*dp2[i];
dp5[i] += dp4[i][0];
}
ll win_ways_w = 0, lose_ways_w = 0;
rep1(r,n){
if(dp2[r]){
win_ways_w += n;
}
else{
lose_ways_w += n;
}
}
ll win_ways_l = 0, lose_ways_l = 0;
rep1(r,n){
win_ways_l += dp5[r];
lose_ways_l += n-dp5[r];
}
Matrix base(1,2);
rep1(i,n){
base.a[0][dp2[i]]++;
}
Matrix mat(2,2);
mat.a = {
{lose_ways_l%MOD, win_ways_l%MOD},
{lose_ways_w%MOD, win_ways_w%MOD}
};
mat.exp(d-1);
base = base*mat;
ll ans = 0;
if(dp2[1]){
ans += n*base.a[0][1];
}
ans += dp5[1]*base.a[0][0];
ans %= MOD;
cout << ans << endl;
}
int main()
{
fastio;
int t = 1;
// cin >> t;
rep1(i, t) {
solve(i);
}
return 0;
}
Compilation message
startrek.cpp: In member function 'Matrix Matrix::operator*(const Matrix&)':
startrek.cpp:93:13: warning: unused variable 'n2' [-Wunused-variable]
93 | int n2 = mat2.n, m2 = mat2.m;
| ^~
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
10584 KB |
Output is correct |
2 |
Correct |
4 ms |
10844 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
10588 KB |
Output is correct |
2 |
Correct |
4 ms |
10584 KB |
Output is correct |
3 |
Correct |
3 ms |
10584 KB |
Output is correct |
4 |
Correct |
3 ms |
10588 KB |
Output is correct |
5 |
Correct |
3 ms |
10588 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
10588 KB |
Output is correct |
2 |
Correct |
3 ms |
10588 KB |
Output is correct |
3 |
Correct |
3 ms |
10588 KB |
Output is correct |
4 |
Correct |
3 ms |
10588 KB |
Output is correct |
5 |
Correct |
3 ms |
10588 KB |
Output is correct |
6 |
Correct |
3 ms |
10588 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
10588 KB |
Output is correct |
2 |
Correct |
3 ms |
10588 KB |
Output is correct |
3 |
Correct |
3 ms |
10588 KB |
Output is correct |
4 |
Correct |
3 ms |
10588 KB |
Output is correct |
5 |
Correct |
3 ms |
10588 KB |
Output is correct |
6 |
Correct |
3 ms |
10588 KB |
Output is correct |
7 |
Correct |
3 ms |
10844 KB |
Output is correct |
8 |
Correct |
3 ms |
10844 KB |
Output is correct |
9 |
Correct |
3 ms |
10844 KB |
Output is correct |
10 |
Correct |
3 ms |
10844 KB |
Output is correct |
11 |
Correct |
4 ms |
10844 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
10588 KB |
Output is correct |
2 |
Correct |
3 ms |
10588 KB |
Output is correct |
3 |
Correct |
3 ms |
10588 KB |
Output is correct |
4 |
Correct |
3 ms |
10588 KB |
Output is correct |
5 |
Correct |
3 ms |
10588 KB |
Output is correct |
6 |
Correct |
3 ms |
10588 KB |
Output is correct |
7 |
Correct |
3 ms |
10844 KB |
Output is correct |
8 |
Correct |
3 ms |
10844 KB |
Output is correct |
9 |
Correct |
3 ms |
10844 KB |
Output is correct |
10 |
Correct |
3 ms |
10844 KB |
Output is correct |
11 |
Correct |
4 ms |
10844 KB |
Output is correct |
12 |
Correct |
95 ms |
23316 KB |
Output is correct |
13 |
Correct |
78 ms |
31768 KB |
Output is correct |
14 |
Correct |
52 ms |
16648 KB |
Output is correct |
15 |
Correct |
65 ms |
16468 KB |
Output is correct |
16 |
Correct |
56 ms |
16580 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
10588 KB |
Output is correct |
2 |
Correct |
3 ms |
10588 KB |
Output is correct |
3 |
Correct |
3 ms |
10588 KB |
Output is correct |
4 |
Correct |
3 ms |
10588 KB |
Output is correct |
5 |
Correct |
3 ms |
10588 KB |
Output is correct |
6 |
Correct |
3 ms |
10588 KB |
Output is correct |
7 |
Correct |
3 ms |
10844 KB |
Output is correct |
8 |
Correct |
3 ms |
10844 KB |
Output is correct |
9 |
Correct |
3 ms |
10844 KB |
Output is correct |
10 |
Correct |
3 ms |
10844 KB |
Output is correct |
11 |
Correct |
4 ms |
10844 KB |
Output is correct |
12 |
Correct |
3 ms |
10584 KB |
Output is correct |
13 |
Correct |
3 ms |
10844 KB |
Output is correct |
14 |
Correct |
3 ms |
10588 KB |
Output is correct |
15 |
Correct |
3 ms |
10596 KB |
Output is correct |
16 |
Correct |
3 ms |
10588 KB |
Output is correct |
17 |
Correct |
2 ms |
10588 KB |
Output is correct |
18 |
Correct |
3 ms |
10588 KB |
Output is correct |
19 |
Correct |
3 ms |
10588 KB |
Output is correct |
20 |
Correct |
3 ms |
10588 KB |
Output is correct |
21 |
Correct |
4 ms |
10840 KB |
Output is correct |
22 |
Correct |
3 ms |
10844 KB |
Output is correct |
23 |
Correct |
3 ms |
10828 KB |
Output is correct |
24 |
Correct |
3 ms |
10844 KB |
Output is correct |
25 |
Correct |
3 ms |
10840 KB |
Output is correct |
26 |
Correct |
3 ms |
10844 KB |
Output is correct |
27 |
Correct |
3 ms |
10844 KB |
Output is correct |
28 |
Correct |
3 ms |
10840 KB |
Output is correct |
29 |
Correct |
3 ms |
10844 KB |
Output is correct |
30 |
Correct |
3 ms |
10844 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
10588 KB |
Output is correct |
2 |
Correct |
3 ms |
10588 KB |
Output is correct |
3 |
Correct |
3 ms |
10588 KB |
Output is correct |
4 |
Correct |
3 ms |
10588 KB |
Output is correct |
5 |
Correct |
3 ms |
10588 KB |
Output is correct |
6 |
Correct |
3 ms |
10588 KB |
Output is correct |
7 |
Correct |
3 ms |
10844 KB |
Output is correct |
8 |
Correct |
3 ms |
10844 KB |
Output is correct |
9 |
Correct |
3 ms |
10844 KB |
Output is correct |
10 |
Correct |
3 ms |
10844 KB |
Output is correct |
11 |
Correct |
4 ms |
10844 KB |
Output is correct |
12 |
Correct |
95 ms |
23316 KB |
Output is correct |
13 |
Correct |
78 ms |
31768 KB |
Output is correct |
14 |
Correct |
52 ms |
16648 KB |
Output is correct |
15 |
Correct |
65 ms |
16468 KB |
Output is correct |
16 |
Correct |
56 ms |
16580 KB |
Output is correct |
17 |
Correct |
3 ms |
10584 KB |
Output is correct |
18 |
Correct |
3 ms |
10844 KB |
Output is correct |
19 |
Correct |
3 ms |
10588 KB |
Output is correct |
20 |
Correct |
3 ms |
10596 KB |
Output is correct |
21 |
Correct |
3 ms |
10588 KB |
Output is correct |
22 |
Correct |
2 ms |
10588 KB |
Output is correct |
23 |
Correct |
3 ms |
10588 KB |
Output is correct |
24 |
Correct |
3 ms |
10588 KB |
Output is correct |
25 |
Correct |
3 ms |
10588 KB |
Output is correct |
26 |
Correct |
4 ms |
10840 KB |
Output is correct |
27 |
Correct |
3 ms |
10844 KB |
Output is correct |
28 |
Correct |
3 ms |
10828 KB |
Output is correct |
29 |
Correct |
3 ms |
10844 KB |
Output is correct |
30 |
Correct |
3 ms |
10840 KB |
Output is correct |
31 |
Correct |
3 ms |
10844 KB |
Output is correct |
32 |
Correct |
3 ms |
10844 KB |
Output is correct |
33 |
Correct |
3 ms |
10840 KB |
Output is correct |
34 |
Correct |
3 ms |
10844 KB |
Output is correct |
35 |
Correct |
3 ms |
10844 KB |
Output is correct |
36 |
Correct |
78 ms |
23420 KB |
Output is correct |
37 |
Correct |
106 ms |
31568 KB |
Output is correct |
38 |
Correct |
45 ms |
16464 KB |
Output is correct |
39 |
Correct |
56 ms |
16480 KB |
Output is correct |
40 |
Correct |
56 ms |
16356 KB |
Output is correct |
41 |
Correct |
82 ms |
27840 KB |
Output is correct |
42 |
Correct |
64 ms |
30124 KB |
Output is correct |
43 |
Correct |
36 ms |
17096 KB |
Output is correct |
44 |
Correct |
56 ms |
16468 KB |
Output is correct |
45 |
Correct |
57 ms |
16484 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
10584 KB |
Output is correct |
2 |
Correct |
4 ms |
10844 KB |
Output is correct |
3 |
Correct |
3 ms |
10588 KB |
Output is correct |
4 |
Correct |
4 ms |
10584 KB |
Output is correct |
5 |
Correct |
3 ms |
10584 KB |
Output is correct |
6 |
Correct |
3 ms |
10588 KB |
Output is correct |
7 |
Correct |
3 ms |
10588 KB |
Output is correct |
8 |
Correct |
3 ms |
10588 KB |
Output is correct |
9 |
Correct |
3 ms |
10588 KB |
Output is correct |
10 |
Correct |
3 ms |
10588 KB |
Output is correct |
11 |
Correct |
3 ms |
10588 KB |
Output is correct |
12 |
Correct |
3 ms |
10588 KB |
Output is correct |
13 |
Correct |
3 ms |
10588 KB |
Output is correct |
14 |
Correct |
3 ms |
10844 KB |
Output is correct |
15 |
Correct |
3 ms |
10844 KB |
Output is correct |
16 |
Correct |
3 ms |
10844 KB |
Output is correct |
17 |
Correct |
3 ms |
10844 KB |
Output is correct |
18 |
Correct |
4 ms |
10844 KB |
Output is correct |
19 |
Correct |
95 ms |
23316 KB |
Output is correct |
20 |
Correct |
78 ms |
31768 KB |
Output is correct |
21 |
Correct |
52 ms |
16648 KB |
Output is correct |
22 |
Correct |
65 ms |
16468 KB |
Output is correct |
23 |
Correct |
56 ms |
16580 KB |
Output is correct |
24 |
Correct |
3 ms |
10584 KB |
Output is correct |
25 |
Correct |
3 ms |
10844 KB |
Output is correct |
26 |
Correct |
3 ms |
10588 KB |
Output is correct |
27 |
Correct |
3 ms |
10596 KB |
Output is correct |
28 |
Correct |
3 ms |
10588 KB |
Output is correct |
29 |
Correct |
2 ms |
10588 KB |
Output is correct |
30 |
Correct |
3 ms |
10588 KB |
Output is correct |
31 |
Correct |
3 ms |
10588 KB |
Output is correct |
32 |
Correct |
3 ms |
10588 KB |
Output is correct |
33 |
Correct |
4 ms |
10840 KB |
Output is correct |
34 |
Correct |
3 ms |
10844 KB |
Output is correct |
35 |
Correct |
3 ms |
10828 KB |
Output is correct |
36 |
Correct |
3 ms |
10844 KB |
Output is correct |
37 |
Correct |
3 ms |
10840 KB |
Output is correct |
38 |
Correct |
3 ms |
10844 KB |
Output is correct |
39 |
Correct |
3 ms |
10844 KB |
Output is correct |
40 |
Correct |
3 ms |
10840 KB |
Output is correct |
41 |
Correct |
3 ms |
10844 KB |
Output is correct |
42 |
Correct |
3 ms |
10844 KB |
Output is correct |
43 |
Correct |
78 ms |
23420 KB |
Output is correct |
44 |
Correct |
106 ms |
31568 KB |
Output is correct |
45 |
Correct |
45 ms |
16464 KB |
Output is correct |
46 |
Correct |
56 ms |
16480 KB |
Output is correct |
47 |
Correct |
56 ms |
16356 KB |
Output is correct |
48 |
Correct |
82 ms |
27840 KB |
Output is correct |
49 |
Correct |
64 ms |
30124 KB |
Output is correct |
50 |
Correct |
36 ms |
17096 KB |
Output is correct |
51 |
Correct |
56 ms |
16468 KB |
Output is correct |
52 |
Correct |
57 ms |
16484 KB |
Output is correct |
53 |
Correct |
72 ms |
31756 KB |
Output is correct |
54 |
Correct |
73 ms |
28404 KB |
Output is correct |
55 |
Correct |
30 ms |
16580 KB |
Output is correct |
56 |
Correct |
66 ms |
23384 KB |
Output is correct |
57 |
Correct |
70 ms |
16756 KB |
Output is correct |
58 |
Correct |
54 ms |
16732 KB |
Output is correct |
59 |
Correct |
54 ms |
16464 KB |
Output is correct |
60 |
Correct |
56 ms |
16324 KB |
Output is correct |