Submission #927213

# Submission time Handle Problem Language Result Execution time Memory
927213 2024-02-14T12:16:52 Z GrindMachine Mechanical Doll (IOI18_doll) C++17
75.553 / 100
81 ms 14148 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*



*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

#include "doll.h"

void create_circuit(int m, std::vector<int> a) {
    // int N = A.size();
    // std::vector<int> C(M + 1);
    // C[0] = -1;
    // for (int i = 1; i <= M; ++i) {
    //     C[i] = 1;
    // }
    // std::vector<int> X(N), Y(N);
    // for (int k = 0; k < N; ++k) {
    //     X[k] = Y[k] = A[k];
    // }
    // answer(C, X, Y);

    int n = sz(a);
    a.pb(0);
    vector<int> b(m+1);
    b[0] = a[0];

    vector<int> pos[m+1];
    rep(i,n) pos[a[i]].pb(i);

    vector<int> sx(1), sy(1), leaf(1), flipped(1);
    int last_guy = inf1, last_type = inf1;

    vector<int> leave(m+1);

    rep1(x,m){
        int c = sz(pos[x]);
        if(c == 0) conts;

        if(c == 2){
            int ptr = sz(sx);
            b[x] = -ptr;
            sx.pb(0), sy.pb(0);
            rep1(j,2){
                int nxt = 0;
                int i = pos[x][j-1];
                if(i+1 < n) nxt = a[i+1];
                if(j == 1) sx[ptr] = nxt;
                else sy[ptr] = nxt;

                if(i+1 == n){
                    last_guy = ptr;
                    last_type = 0;
                }
            }
    
            conts;            
        }

        int siz = 1;
        while(siz <= c) siz <<= 1;
        int chain_siz = __lg(siz);

        int root = sz(sx);
        b[x] = -root;

        rep1(i,chain_siz){
            sx.pb(0), sy.pb(0);
        }
        rep1(i,chain_siz-1){
            sx[root-1+i] = -root;
            sy[root-1+i] = -(root+i);
        }

        sx[root-1+chain_siz] = -root;
        sy[root-1+chain_siz] = inf1;
        leave[x] = -(root-1+chain_siz);

        rev(bit,chain_siz-1,0){
            if(!(c&(1<<bit))) conts;
            if(!bit){
                while(sz(leaf) < sz(sx)){
                    leaf.pb(0);
                }
                leaf[root-1+chain_siz] = 1;
                conts;
            }

            // build bin tree, depth = bit-1
            int pos_on_chain = root-1+chain_siz-bit;
            int ptr = sz(sx);
            sx.pb(0), sy.pb(0);
            sx[pos_on_chain] = -ptr;
            queue<pii> q;
            q.push({ptr,0});

            while(!q.empty()){
                auto [u,d] = q.front();
                q.pop();

                if(d >= bit-1){
                    while(sz(leaf) < sz(sx)){
                        leaf.pb(0);
                    }
                    leaf[u] = 1;
                    conts;
                }

                sx[u] = -sz(sx);
                sy[u] = -(sz(sx)+1);

                sx.pb(0), sy.pb(0);
                sx.pb(0), sy.pb(0);

                q.push({-sx[u],d+1});
                q.push({-sy[u],d+1});
            }
        }

        while(sz(flipped) < sz(sx)){
            flipped.pb(0);
        }

        int ptr = root;
        int cnt = 0;

        while(true){
            if(leaf[ptr]){
                cnt++;
                flipped[ptr] ^= 1;
                int i = pos[x][cnt-1];
                int nxt = 0;
                if(i+1 < n) nxt = a[i+1];
                else{
                    last_guy = ptr;
                    last_type = flipped[ptr];
                }

                if(flipped[ptr]){
                    sx[ptr] = nxt;
                }
                else{
                    sy[ptr] = nxt;
                }

                ptr = root;

                if(cnt == c) break;
            }
            else{
                flipped[ptr] ^= 1;
                if(flipped[ptr]){
                    ptr = -sx[ptr];
                }
                else{
                    ptr = -sy[ptr];
                }
            }
        }
    }

    vector<pii> pending;
    rep1(i,m){
        if(!pos[i].empty() and sz(pos[i]) != 2){
            pending.pb({b[i],leave[i]});
        }
    }

    pending.pb({0,0});

    if(last_type == 1){
        sx[last_guy] = pending[0].ff;
    }
    else{
        sy[last_guy] = pending[0].ff;
    }

    rep(i,sz(pending)-1){
        sy[-pending[i].ss] = pending[i+1].ff;
    }

    sx.erase(sx.begin());
    sy.erase(sy.begin());
    int mx_allowed = n+__lg(n-1)+1;
    // assert(sz(sx) <= mx_allowed);
    answer(b,sx,sy);
}

Compilation message

doll.cpp: In function 'void create_circuit(int, std::vector<int>)':
doll.cpp:236:9: warning: unused variable 'mx_allowed' [-Wunused-variable]
  236 |     int mx_allowed = n+__lg(n-1)+1;
      |         ^~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 31 ms 9936 KB Output is correct
3 Correct 27 ms 8660 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 9 ms 4184 KB Output is correct
6 Correct 44 ms 12240 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 31 ms 9936 KB Output is correct
3 Correct 27 ms 8660 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 9 ms 4184 KB Output is correct
6 Correct 44 ms 12240 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 36 ms 9036 KB Output is correct
9 Correct 42 ms 12884 KB Output is correct
10 Correct 52 ms 12832 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 344 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 31 ms 9936 KB Output is correct
3 Correct 27 ms 8660 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 9 ms 4184 KB Output is correct
6 Correct 44 ms 12240 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 36 ms 9036 KB Output is correct
9 Correct 42 ms 12884 KB Output is correct
10 Correct 52 ms 12832 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 344 KB Output is correct
14 Correct 71 ms 13728 KB Output is correct
15 Incorrect 52 ms 10444 KB Output isn't correct
16 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 344 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 56 ms 6404 KB Output is correct
3 Correct 63 ms 6128 KB Output is correct
4 Correct 81 ms 9196 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 56 ms 6404 KB Output is correct
3 Correct 63 ms 6128 KB Output is correct
4 Correct 81 ms 9196 KB Output is correct
5 Partially correct 72 ms 14148 KB Output is partially correct
6 Partially correct 68 ms 13380 KB Output is partially correct
7 Partially correct 69 ms 13636 KB Output is partially correct
8 Partially correct 62 ms 12788 KB Output is partially correct
9 Partially correct 52 ms 6700 KB Output is partially correct
10 Partially correct 77 ms 12188 KB Output is partially correct
11 Partially correct 57 ms 10828 KB Output is partially correct
12 Partially correct 39 ms 7888 KB Output is partially correct
13 Partially correct 44 ms 9176 KB Output is partially correct
14 Partially correct 45 ms 9940 KB Output is partially correct
15 Partially correct 46 ms 10188 KB Output is partially correct
16 Partially correct 1 ms 604 KB Output is partially correct
17 Partially correct 38 ms 7820 KB Output is partially correct
18 Partially correct 39 ms 7640 KB Output is partially correct
19 Partially correct 38 ms 7740 KB Output is partially correct
20 Partially correct 55 ms 10568 KB Output is partially correct
21 Partially correct 57 ms 10564 KB Output is partially correct
22 Partially correct 52 ms 10060 KB Output is partially correct