Submission #927057

# Submission time Handle Problem Language Result Execution time Memory
927057 2024-02-14T07:48:05 Z GrindMachine Mechanical Doll (IOI18_doll) C++17
53 / 100
114 ms 15372 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*



*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

#include "doll.h"

void create_circuit(int m, std::vector<int> a) {
    // int N = A.size();
    // std::vector<int> C(M + 1);
    // C[0] = -1;
    // for (int i = 1; i <= M; ++i) {
    //     C[i] = 1;
    // }
    // std::vector<int> X(N), Y(N);
    // for (int k = 0; k < N; ++k) {
    //     X[k] = Y[k] = A[k];
    // }
    // answer(C, X, Y);

    int n = sz(a);
    vector<int> b(m+1);

    vector<int> pos[m+1];
    rep(i,n) pos[a[i]].pb(i);
    
    vector<int> root(m+1);
    vector<int> sx(1), sy(1), flipped;
    int switch_ptr = 1;

    rep1(i,m){
        if(sz(pos[i]) <= 1) conts;
        root[i] = -switch_ptr;
        sx.pb(0), sy.pb(0);
        switch_ptr++;
    }

    b[0] = a[0];
    rep(i,n){
        b[a[i]] = root[a[i]];
    }

    ll last_guy = inf2, last_type = inf2;
    vector<pll> pending;

    rep1(x,m){
        if(pos[x].empty()) conts;
        auto &p = pos[x];
        int c = sz(p);
        if(c == 1){
            ll i = p[0];
            if(i+1 < n){
                b[x] = a[i+1];
            }
            else{
                last_guy = x;
            }

            conts;
        }

        int siz = 1;
        while(siz < c) siz <<= 1;

        queue<pll> q;
        q.push({root[x],0});
        ll depth = __lg(siz)-1;

        while(!q.empty()){
            auto [u,d] = q.front();
            q.pop();
            if(d >= depth) conts;

            sx[-u] = -switch_ptr;
            sx.pb(0), sy.pb(0);
            switch_ptr++;

            sy[-u] = -switch_ptr;
            sx.pb(0), sy.pb(0);
            switch_ptr++;

            q.push({sx[-u],d+1});
            q.push({sy[-u],d+1});
        }

        while(sz(flipped) < sz(sx)){
            flipped.pb(0);
        }

        rep1(iter,siz){
            int ptr = root[x];
            rep1(d,depth){
                flipped[-ptr] ^= 1;
                if(flipped[-ptr]){
                    ptr = sx[-ptr];
                }
                else{
                    ptr = sy[-ptr];
                }
            }

            if(iter <= c){
                ll i = p[iter-1];
                if(i+1 < n){
                    ll nxt = a[i+1];
                    flipped[-ptr] ^= 1;
                    if(flipped[-ptr]){
                        sx[-ptr] = nxt;
                    }
                    else{
                        sy[-ptr] = nxt;
                    }
                }
                else{
                    last_guy = ptr;
                    flipped[-ptr] ^= 1;
                    if(flipped[-ptr]){
                        last_type = 0;
                    }
                    else{
                        last_type = 1;
                    }
                }
            }
            else{
                ll nxt = 0;
                if(iter < siz){
                    nxt = root[x];
                    flipped[-ptr] ^= 1;
                    if(flipped[-ptr]){
                        sx[-ptr] = nxt;
                    }
                    else{
                        sy[-ptr] = nxt;
                    }
                }
                else{
                    flipped[-ptr] ^= 1;
                    pending.pb({root[x],ptr});
                }
            }
        }
    }

    assert(accumulate(all(flipped),0ll) == 0);

    pending.pb({0,0});

    if(last_type == 0){
        sx[-last_guy] = pending.front().ff;
    }
    else if(last_type == 1){
        sy[-last_guy] = pending.front().ff;
    }
    else{
        b[last_guy] = pending.front().ff;
    }

    rep(i,sz(pending)-1){
        sy[-pending[i].ss] = pending[i+1].ff;
    }

    sx.erase(sx.begin());
    sy.erase(sy.begin());
    assert(switch_ptr <= 2*n);
    answer(b,sx,sy);
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 19 ms 6748 KB Output is correct
3 Correct 16 ms 5468 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 11 ms 4188 KB Output is correct
6 Correct 32 ms 8024 KB Output is correct
7 Correct 0 ms 344 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 19 ms 6748 KB Output is correct
3 Correct 16 ms 5468 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 11 ms 4188 KB Output is correct
6 Correct 32 ms 8024 KB Output is correct
7 Correct 0 ms 344 KB Output is correct
8 Correct 42 ms 7892 KB Output is correct
9 Correct 38 ms 9296 KB Output is correct
10 Correct 59 ms 11848 KB Output is correct
11 Correct 0 ms 344 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 19 ms 6748 KB Output is correct
3 Correct 16 ms 5468 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 11 ms 4188 KB Output is correct
6 Correct 32 ms 8024 KB Output is correct
7 Correct 0 ms 344 KB Output is correct
8 Correct 42 ms 7892 KB Output is correct
9 Correct 38 ms 9296 KB Output is correct
10 Correct 59 ms 11848 KB Output is correct
11 Correct 0 ms 344 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 77 ms 13252 KB Output is correct
15 Correct 35 ms 6340 KB Output is correct
16 Correct 55 ms 9528 KB Output is correct
17 Correct 1 ms 344 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 63 ms 12172 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Incorrect 0 ms 348 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Partially correct 0 ms 600 KB Output is partially correct
2 Correct 49 ms 6856 KB Output is correct
3 Partially correct 93 ms 11024 KB Output is partially correct
4 Partially correct 96 ms 12592 KB Output is partially correct
# Verdict Execution time Memory Grader output
1 Partially correct 0 ms 600 KB Output is partially correct
2 Correct 49 ms 6856 KB Output is correct
3 Partially correct 93 ms 11024 KB Output is partially correct
4 Partially correct 96 ms 12592 KB Output is partially correct
5 Partially correct 81 ms 15372 KB Output is partially correct
6 Partially correct 85 ms 14588 KB Output is partially correct
7 Partially correct 83 ms 14376 KB Output is partially correct
8 Partially correct 86 ms 14408 KB Output is partially correct
9 Partially correct 84 ms 9848 KB Output is partially correct
10 Partially correct 114 ms 15072 KB Output is partially correct
11 Partially correct 101 ms 14624 KB Output is partially correct
12 Partially correct 70 ms 9880 KB Output is partially correct
13 Partially correct 55 ms 9548 KB Output is partially correct
14 Partially correct 64 ms 9448 KB Output is partially correct
15 Partially correct 54 ms 9208 KB Output is partially correct
16 Partially correct 2 ms 600 KB Output is partially correct
17 Partially correct 46 ms 8028 KB Output is partially correct
18 Partially correct 53 ms 7984 KB Output is partially correct
19 Partially correct 50 ms 8592 KB Output is partially correct
20 Partially correct 67 ms 11048 KB Output is partially correct
21 Partially correct 86 ms 13076 KB Output is partially correct
22 Partially correct 78 ms 10292 KB Output is partially correct