Submission #924693

# Submission time Handle Problem Language Result Execution time Memory
924693 2024-02-09T13:20:58 Z qwe1rt1yuiop1 Collecting Stamps 3 (JOI20_ho_t3) C++14
100 / 100
587 ms 448904 KB
#include <bits/stdc++.h>
#define int long long
using namespace std;
using pii = pair<int, int>;

int n, l;

vector<int> x, t;

int dis(int a, int b)
{
    assert(0 <= a && 0 <= b && a <= n && b <= n);
    return min(min(abs(x[a] - x[b]), x[a] + l - x[b]), l - x[a] + x[b]);
}

void solve()
{
    cin >> n >> l;
    x.assign(n + 1, 0), t.assign(n + 1, -1);
    for (int i = 1; i <= n; ++i)
        cin >> x[i];
    for (int i = 1; i <= n; ++i)
        cin >> t[i];

    vector<vector<vector<vector<int>>>> dp(n + 1, vector<vector<vector<int>>>(n + 1, vector<vector<int>>(n + 1, vector<int>(2, LONG_LONG_MAX))));

    // priority_queue<array<int, 5>> pq;
    // array<int, 5> tmp;
    dp[0][0][0][0] = dp[0][0][0][1] = 0;
    // for (int i = 0; i <= n; ++i)
    //     for (int j = 0; j <= n; ++j)
    //         if (i > j || i == 0)
    //         {
    //             dp[0][i][j][0] = dis(0, j) + dis(j, i);
    //             dp[0][i][j][1] = dis(0, i) + dis(i, j);
    //         }
    // pq.emplace(tmp = {0, 0, 0, 0, 0});
    // pq.emplace(tmp = {0, 0, 0, 0, 1});
    /*
    while (!pq.empty())
    {
        tmp = pq.top();
        pq.pop();
        int i = tmp[1], j = tmp[2], k = tmp[3], ll = tmp[4], d = -tmp[0];
        if (d != dp[i][j][k][ll])
            continue;
        // cout << d << ' ';

        if (ll == 0)
        {
            if ((j + n) % (n + 1) != k)
            {
                if (dp[i][(j + n) % (n + 1)][k][0] > dp[i][j][k][0] + dis(j, (j + n) % (n + 1)))
                {
                    dp[i][(j + n) % (n + 1)][k][0] = dp[i][j][k][0] + dis(j, (j + n) % (n + 1));
                    pq.emplace(tmp = {-dp[i][(j + n) % (n + 1)][k][0], i, (j + n) % (n + 1), k, 0});
                }
                if (dp[i][j][k][0] + dis(j, (j + n) % (n + 1)) <= t[(j + n) % (n + 1)])
                {
                    if (dp[i + 1][(j + n) % (n + 1)][k][0] > dp[i][j][k][0] + dis(j, (j + n) % (n + 1)))
                    {
                        dp[i + 1][(j + n) % (n + 1)][k][0] = dp[i][j][k][0] + dis(j, (j + n) % (n + 1));
                        pq.emplace(tmp = {-dp[i + 1][(j + n) % (n + 1)][k][0], i + 1, (j + n) % (n + 1), k, 0});
                    }
                }
            }
            if (j != (k + 1) % (n + 1))
            {
                if (dp[i][j][(k + 1) % (n + 1)][1] > dp[i][j][k][0] + dis(j, (k + 1) % (n + 1)))
                {
                    dp[i][j][(k + 1) % (n + 1)][1] = dp[i][j][k][0] + dis(j, (k + 1) % (n + 1));
                    pq.emplace(tmp = {-dp[i][j][(k + 1) % (n + 1)][1], i, j, (k + 1) % (n + 1), 1});
                }
                if (dp[i][j][k][0] + dis(j, (k + 1) % (n + 1)) <= t[(k + 1) % (n + 1)])
                {
                    if (dp[i + 1][j][(k + 1) % (n + 1)][1] > dp[i][j][k][0] + dis(j, (k + 1) % (n + 1)))
                    {
                        dp[i + 1][j][(k + 1) % (n + 1)][1] = dp[i][j][k][0] + dis(j, (k + 1) % (n + 1));
                        pq.emplace(tmp = {-dp[i + 1][j][(k + 1) % (n + 1)][1], i + 1, j, (k + 1) % (n + 1), 1});
                    }
                }
            }
        }
        else
        {
            if ((j + n) % (n + 1) != k)
            {
                if (dp[i][(j + n) % (n + 1)][k][0] > dp[i][j][k][1] + dis(k, (j + n) % (n + 1)))
                {
                    dp[i][(j + n) % (n + 1)][k][0] = dp[i][j][k][1] + dis(k, (j + n) % (n + 1));
                    pq.emplace(tmp = {-dp[i][(j + n) % (n + 1)][k][0], i, (j + n) % (n + 1), k, 0});
                }
                if (dp[i][j][k][1] + dis(k, (j + n) % (n + 1)) <= t[(j + n) % (n + 1)])
                {
                    if (dp[i + 1][(j + n) % (n + 1)][k][0] > dp[i][j][k][1] + dis(k, (j + n) % (n + 1)))
                    {
                        dp[i + 1][(j + n) % (n + 1)][k][0] = dp[i][j][k][1] + dis(k, (j + n) % (n + 1));
                        pq.emplace(tmp = {-dp[i + 1][(j + n) % (n + 1)][k][0], i + 1, (j + n) % (n + 1), k, 0});
                    }
                }
            }
            if (j != (k + 1) % (n + 1))
            {
                if (dp[i][j][(k + 1) % (n + 1)][1] > dp[i][j][k][1] + dis(k, (k + 1) % (n + 1)))
                {
                    dp[i][j][(k + 1) % (n + 1)][1] = dp[i][j][k][1] + dis(k, (k + 1) % (n + 1));
                    pq.emplace(tmp = {-dp[i][j][(k + 1) % (n + 1)][1], i, j, (k + 1) % (n + 1), 1});
                }
                if (dp[i][j][k][1] + dis(k, (k + 1) % (n + 1)) <= t[(k + 1) % (n + 1)])
                {
                    if (dp[i + 1][j][(k + 1) % (n + 1)][1] > dp[i][j][k][1] + dis(k, (k + 1) % (n + 1)))
                    {
                        dp[i + 1][j][(k + 1) % (n + 1)][1] = dp[i][j][k][1] + dis(k, (k + 1) % (n + 1));
                        pq.emplace(tmp = {-dp[i + 1][j][(k + 1) % (n + 1)][1], i + 1, j, (k + 1) % (n + 1), 1});
                    }
                }
            }
        }
    }
    */

    for (int i = 0; i < n; ++i)
        for (int sz = 1; sz <= n; ++sz)
            for (int j = 0, k = (j + sz - 1) % (n + 1); j <= n; ++j, k = (k + 1) % (n + 1))
            // for (int j = 0; j <= n; ++j)
            //     for (int k = 0; k <= n; ++k)
            {
                if (dp[i][j][k][0] != LONG_LONG_MAX)
                {
                    if ((j + n) % (n + 1) != k)
                    {
                        dp[i][(j + n) % (n + 1)][k][0] = min(dp[i][(j + n) % (n + 1)][k][0], dp[i][j][k][0] + dis(j, (j + n) % (n + 1)));
                        if (dp[i][j][k][0] + dis(j, (j + n) % (n + 1)) <= t[(j + n) % (n + 1)])
                            dp[i + 1][(j + n) % (n + 1)][k][0] = min(dp[i + 1][(j + n) % (n + 1)][k][0], dp[i][j][k][0] + dis(j, (j + n) % (n + 1)));
                    }
                    if (j != (k + 1) % (n + 1))
                    {
                        dp[i][j][(k + 1) % (n + 1)][1] = min(dp[i][j][(k + 1) % (n + 1)][1], dp[i][j][k][0] + dis(j, (k + 1) % (n + 1)));
                        if (dp[i][j][k][0] + dis(j, (k + 1) % (n + 1)) <= t[(k + 1) % (n + 1)])
                            dp[i + 1][j][(k + 1) % (n + 1)][1] = min(dp[i + 1][j][(k + 1) % (n + 1)][1], dp[i][j][k][0] + dis(j, (k + 1) % (n + 1)));
                    }
                }
                if (dp[i][j][k][1] != LONG_LONG_MAX)
                {
                    if ((j + n) % (n + 1) != k)
                    {
                        dp[i][(j + n) % (n + 1)][k][0] = min(dp[i][(j + n) % (n + 1)][k][0], dp[i][j][k][1] + dis(k, (j + n) % (n + 1)));
                        if (dp[i][j][k][1] + dis(k, (j + n) % (n + 1)) <= t[(j + n) % (n + 1)])
                            dp[i + 1][(j + n) % (n + 1)][k][0] = min(dp[i + 1][(j + n) % (n + 1)][k][0], dp[i][j][k][1] + dis(k, (j + n) % (n + 1)));
                    }
                    if (j != (k + 1) % (n + 1))
                    {
                        dp[i][j][(k + 1) % (n + 1)][1] = min(dp[i][j][(k + 1) % (n + 1)][1], dp[i][j][k][1] + dis(k, (k + 1) % (n + 1)));
                        if (dp[i][j][k][1] + dis(k, (k + 1) % (n + 1)) <= t[(k + 1) % (n + 1)])
                            dp[i + 1][j][(k + 1) % (n + 1)][1] = min(dp[i + 1][j][(k + 1) % (n + 1)][1], dp[i][j][k][1] + dis(k, (k + 1) % (n + 1)));
                    }
                }
            }

    int ans = 0;
    for (int i = 0; i <= n; ++i)
        for (int j = 0; j <= n; ++j)
            for (int k = 0; k <= n; ++k)
                for (int l = 0; l < 2; ++l)
                    if (dp[i][j][k][l] != LONG_LONG_MAX)
                        ans = max(ans, i);
    cout << ans << '\n';
}

/*
6 25
3 4 7 17 21 23
11 7 17 10 8 10

5 20
4 5 8 13 17
18 23 15 7 10

4 19
3 7 12 14
2 0 5 4

10 87
9 23 33 38 42 44 45 62 67 78
15 91 7 27 31 53 12 91 89 46

 */

signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);

    solve();

    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 452 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 432 KB Output is correct
7 Correct 0 ms 456 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 456 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 408 KB Output is correct
17 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 452 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 432 KB Output is correct
7 Correct 0 ms 456 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 456 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 408 KB Output is correct
17 Correct 1 ms 348 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 0 ms 604 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 1 ms 604 KB Output is correct
24 Correct 1 ms 604 KB Output is correct
25 Correct 1 ms 460 KB Output is correct
26 Correct 1 ms 604 KB Output is correct
27 Correct 0 ms 348 KB Output is correct
28 Correct 1 ms 500 KB Output is correct
29 Correct 1 ms 604 KB Output is correct
30 Correct 1 ms 604 KB Output is correct
31 Correct 1 ms 604 KB Output is correct
32 Correct 0 ms 604 KB Output is correct
33 Correct 1 ms 604 KB Output is correct
34 Correct 1 ms 604 KB Output is correct
35 Correct 1 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 452 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 432 KB Output is correct
7 Correct 0 ms 456 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 456 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 408 KB Output is correct
17 Correct 1 ms 348 KB Output is correct
18 Correct 408 ms 322900 KB Output is correct
19 Correct 230 ms 152404 KB Output is correct
20 Correct 87 ms 59480 KB Output is correct
21 Correct 208 ms 139860 KB Output is correct
22 Correct 265 ms 206672 KB Output is correct
23 Correct 70 ms 46680 KB Output is correct
24 Correct 48 ms 32300 KB Output is correct
25 Correct 67 ms 45260 KB Output is correct
26 Correct 14 ms 10840 KB Output is correct
27 Correct 72 ms 48220 KB Output is correct
28 Correct 41 ms 29088 KB Output is correct
29 Correct 79 ms 49756 KB Output is correct
30 Correct 48 ms 34640 KB Output is correct
31 Correct 68 ms 45084 KB Output is correct
32 Correct 25 ms 17240 KB Output is correct
33 Correct 69 ms 45148 KB Output is correct
34 Correct 11 ms 9820 KB Output is correct
35 Correct 62 ms 43796 KB Output is correct
36 Correct 18 ms 14424 KB Output is correct
37 Correct 67 ms 48204 KB Output is correct
38 Correct 30 ms 19548 KB Output is correct
39 Correct 69 ms 51268 KB Output is correct
40 Correct 32 ms 23132 KB Output is correct
41 Correct 576 ms 442536 KB Output is correct
42 Correct 264 ms 244676 KB Output is correct
43 Correct 547 ms 442660 KB Output is correct
44 Correct 257 ms 239820 KB Output is correct
45 Correct 542 ms 442796 KB Output is correct
46 Correct 261 ms 244564 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 452 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 432 KB Output is correct
7 Correct 0 ms 456 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 456 KB Output is correct
13 Correct 1 ms 344 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 408 KB Output is correct
17 Correct 1 ms 348 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 0 ms 604 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 1 ms 604 KB Output is correct
24 Correct 1 ms 604 KB Output is correct
25 Correct 1 ms 460 KB Output is correct
26 Correct 1 ms 604 KB Output is correct
27 Correct 0 ms 348 KB Output is correct
28 Correct 1 ms 500 KB Output is correct
29 Correct 1 ms 604 KB Output is correct
30 Correct 1 ms 604 KB Output is correct
31 Correct 1 ms 604 KB Output is correct
32 Correct 0 ms 604 KB Output is correct
33 Correct 1 ms 604 KB Output is correct
34 Correct 1 ms 604 KB Output is correct
35 Correct 1 ms 604 KB Output is correct
36 Correct 408 ms 322900 KB Output is correct
37 Correct 230 ms 152404 KB Output is correct
38 Correct 87 ms 59480 KB Output is correct
39 Correct 208 ms 139860 KB Output is correct
40 Correct 265 ms 206672 KB Output is correct
41 Correct 70 ms 46680 KB Output is correct
42 Correct 48 ms 32300 KB Output is correct
43 Correct 67 ms 45260 KB Output is correct
44 Correct 14 ms 10840 KB Output is correct
45 Correct 72 ms 48220 KB Output is correct
46 Correct 41 ms 29088 KB Output is correct
47 Correct 79 ms 49756 KB Output is correct
48 Correct 48 ms 34640 KB Output is correct
49 Correct 68 ms 45084 KB Output is correct
50 Correct 25 ms 17240 KB Output is correct
51 Correct 69 ms 45148 KB Output is correct
52 Correct 11 ms 9820 KB Output is correct
53 Correct 62 ms 43796 KB Output is correct
54 Correct 18 ms 14424 KB Output is correct
55 Correct 67 ms 48204 KB Output is correct
56 Correct 30 ms 19548 KB Output is correct
57 Correct 69 ms 51268 KB Output is correct
58 Correct 32 ms 23132 KB Output is correct
59 Correct 576 ms 442536 KB Output is correct
60 Correct 264 ms 244676 KB Output is correct
61 Correct 547 ms 442660 KB Output is correct
62 Correct 257 ms 239820 KB Output is correct
63 Correct 542 ms 442796 KB Output is correct
64 Correct 261 ms 244564 KB Output is correct
65 Correct 461 ms 379720 KB Output is correct
66 Correct 407 ms 333908 KB Output is correct
67 Correct 388 ms 312724 KB Output is correct
68 Correct 332 ms 277072 KB Output is correct
69 Correct 447 ms 373520 KB Output is correct
70 Correct 453 ms 350292 KB Output is correct
71 Correct 403 ms 356436 KB Output is correct
72 Correct 472 ms 361880 KB Output is correct
73 Correct 357 ms 322900 KB Output is correct
74 Correct 387 ms 292136 KB Output is correct
75 Correct 381 ms 339152 KB Output is correct
76 Correct 546 ms 416652 KB Output is correct
77 Correct 470 ms 416648 KB Output is correct
78 Correct 380 ms 282248 KB Output is correct
79 Correct 349 ms 296760 KB Output is correct
80 Correct 547 ms 404292 KB Output is correct
81 Correct 347 ms 301892 KB Output is correct
82 Correct 370 ms 328336 KB Output is correct
83 Correct 518 ms 442336 KB Output is correct
84 Correct 403 ms 350180 KB Output is correct
85 Correct 433 ms 397652 KB Output is correct
86 Correct 441 ms 385524 KB Output is correct
87 Correct 426 ms 339176 KB Output is correct
88 Correct 587 ms 448904 KB Output is correct
89 Correct 545 ms 448848 KB Output is correct
90 Correct 365 ms 345160 KB Output is correct
91 Correct 585 ms 448900 KB Output is correct
92 Correct 544 ms 448832 KB Output is correct
93 Correct 457 ms 435596 KB Output is correct