답안 #922451

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
922451 2024-02-05T14:09:00 Z GrindMachine Olympic Bus (JOI20_ho_t4) C++17
100 / 100
442 ms 6712 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*



*/

const int MOD = 1e9 + 7;
const int N = 200 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;
const int M = 5e4 + 5;

vector<array<ll,3>> adj[N];
vector<pll> adj2[N];
vector<bool> bridge(M);
vector<bool> ignored(M);
vector<bool> vis(N);
vector<ll> tin(N), low(N);
ll timer = 1;

void dfs1(ll u, ll p){
    vis[u] = 1;
    tin[u] = low[u] = timer++;

    for(auto [v,id] : adj2[u]){
        if(v == p) conts;
        if(vis[v]){
            amin(low[u],tin[v]);
        }
        else{
            dfs1(v,u);
            amin(low[u],low[v]);
            if(low[v] > tin[u]){
                bridge[id] = 1;
            }
        }
    }
}

void dfs2(ll u, ll p, ll ignore){
    vis[u] = 1;
    for(auto [v,id] : adj2[u]){
        if(vis[v]) conts;
        if(id == ignore) conts;
        dfs2(v,u,ignore);
    }
}

vector<ll> topo;

void dfs3(ll u){
    vis[u] = 1;
    for(auto [v,id] : adj2[u]){
        if(vis[v]){
            ignored[id] = 1;
            conts;
        }
        dfs3(v);
    }

    topo.pb(u);
}

void solve(int test_case)
{
    ll n,m; cin >> n >> m;
    vector<array<ll,4>> edges(m+5);

    rep1(i,m){
        ll u,v,w,d; cin >> u >> v >> w >> d;
        adj[u].pb({v,w,i}), adj[v].pb({u,w,i});
        edges[i] = {u,v,w,d};
    }

    auto dijkstra = [&](ll s, ll flipped){
        vector<ll> dis(n+5,inf2);
        dis[s] = 0;
        rep1(i,n) vis[i] = 0;

        rep1(iter,n){
            pll best = {inf2,inf2};
            rep1(u,n){
                if(vis[u]) conts;
                pll px = {dis[u],u};
                amin(best,px);
            }

            ll u = best.ss;
            vis[u] = 1;

            for(auto [v,w,id] : adj[u]){
                if(id != flipped){
                    if(edges[id][0] == u){
                        amin(dis[v],dis[u]+w);
                    }
                }
                else{
                    if(edges[id][0] == v){
                        amin(dis[v],dis[u]+w);
                    }
                }
            }
        }

        return dis;
    };

    auto dijkstra_rev = [&](ll s){
        vector<ll> dis(n+5,inf2);
        dis[s] = 0;
        rep1(i,n) vis[i] = 0;

        rep1(iter,n){
            pll best = {inf2,inf2};
            rep1(u,n){
                if(vis[u]) conts;
                pll px = {dis[u],u};
                amin(best,px);
            }

            ll u = best.ss;
            vis[u] = 1;

            for(auto [v,w,id] : adj[u]){
                if(edges[id][0] == v){
                    amin(dis[v],dis[u]+w);
                }
            }
        }

        return dis;
    };

    auto dis1 = dijkstra(1,-1);
    auto disn = dijkstra(n,-1);
    auto dis1_rev = dijkstra_rev(1);
    auto disn_rev = dijkstra_rev(n);

    rep1(u,n){
        for(auto [v,w,id] : adj[u]){
            if(edges[id][0] == u){
                if(dis1[u]+w == dis1[v]){
                    adj2[u].pb({v,id});
                }
            }
        }
    }

    auto go = [&](ll s){
        ll t = n^1^s;
        fill(all(vis),0);
        fill(all(ignored),0);
        topo.clear();
        dfs3(s);

        vector<ll> dp1(n+5), dp2(n+5);
        dp1[t] = 1;

        trav(u,topo){
            for(auto [v,id] : adj2[u]){
                if(ignored[id]) conts;
                dp1[u] += dp1[v];
                dp1[u] %= MOD;
            }
        }

        reverse(all(topo));
        vector<ll> inc[n+5];
        rep1(u,n){
            for(auto [v,id] : adj2[u]){
                if(ignored[id]) conts;
                inc[v].pb(u);
            }
        }

        dp2[s] = 1;

        trav(u,topo){
            trav(v,inc[u]){
                dp2[u] += dp2[v];
                dp2[u] %= MOD;
            }
        }

        rep1(u,n){
            for(auto [v,id] : adj2[u]){
                if(ignored[id]) conts;
                ll ways = dp1[v]*dp2[u]%MOD;
                if(ways == dp1[s]){
                    bridge[id] = 1;
                }
            }
        }
    };

    if(dis1[n] != inf2){
        go(1);
    }

    rep1(i,n) adj2[i].clear();

    rep1(u,n){
        for(auto [v,w,id] : adj[u]){
            if(edges[id][0] == u){
                if(disn[u]+w == disn[v]){
                    adj2[u].pb({v,id});
                }
            }
        }
    }

    timer = 1;
    fill(all(vis),0);
    if(disn[1] != inf2){
        go(n);
    }

    assert(count(all(bridge),1) <= 2*n);

    ll ans = inf2;
    amin(ans,dis1[n]+disn[1]);

    rep1(i,m){
        auto [u,v,w,d] = edges[i];
        if(bridge[i]){
            ll cost = d+dijkstra(1,i)[n]+dijkstra(n,i)[1];
            amin(ans,cost);
        }
        else{
            ll sp_1_n = min(dis1[n],dis1[v]+w+disn_rev[u]);
            ll sp_n_1 = min(disn[1],disn[v]+w+dis1_rev[u]);
            ll cost = d+sp_1_n+sp_n_1;
            amin(ans,cost);
            if(cost == 16){
                debug(i);
                debug(sp_1_n);
                debug(sp_n_1);
                debug(disn[1]);
            }
        }
    }

    if(ans == inf2) ans = -1;
    cout << ans << endl;
}

int main()
{
    fastio;

    int t = 1;
    // cin >> t;

    rep1(i, t) {
        solve(i);
    }

    return 0;
}

Compilation message

ho_t4.cpp: In function 'void solve(int)':
ho_t4.cpp:46:18: warning: statement has no effect [-Wunused-value]
   46 | #define debug(x) 42
      |                  ^~
ho_t4.cpp:283:17: note: in expansion of macro 'debug'
  283 |                 debug(i);
      |                 ^~~~~
ho_t4.cpp:46:18: warning: statement has no effect [-Wunused-value]
   46 | #define debug(x) 42
      |                  ^~
ho_t4.cpp:284:17: note: in expansion of macro 'debug'
  284 |                 debug(sp_1_n);
      |                 ^~~~~
ho_t4.cpp:46:18: warning: statement has no effect [-Wunused-value]
   46 | #define debug(x) 42
      |                  ^~
ho_t4.cpp:285:17: note: in expansion of macro 'debug'
  285 |                 debug(sp_n_1);
      |                 ^~~~~
ho_t4.cpp:46:18: warning: statement has no effect [-Wunused-value]
   46 | #define debug(x) 42
      |                  ^~
ho_t4.cpp:286:17: note: in expansion of macro 'debug'
  286 |                 debug(disn[1]);
      |                 ^~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 16 ms 600 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 4 ms 604 KB Output is correct
4 Correct 5 ms 600 KB Output is correct
5 Correct 2 ms 600 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 600 KB Output is correct
10 Correct 56 ms 600 KB Output is correct
11 Correct 70 ms 600 KB Output is correct
12 Correct 60 ms 600 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 5 ms 604 KB Output is correct
15 Correct 3 ms 604 KB Output is correct
16 Correct 4 ms 604 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 28 ms 5364 KB Output is correct
2 Correct 30 ms 5468 KB Output is correct
3 Correct 28 ms 5208 KB Output is correct
4 Correct 4 ms 604 KB Output is correct
5 Correct 4 ms 612 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 18 ms 5468 KB Output is correct
10 Correct 17 ms 5468 KB Output is correct
11 Correct 30 ms 5492 KB Output is correct
12 Correct 37 ms 5468 KB Output is correct
13 Correct 28 ms 5500 KB Output is correct
14 Correct 29 ms 5980 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 26 ms 600 KB Output is correct
2 Correct 5 ms 348 KB Output is correct
3 Correct 206 ms 5000 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 322 ms 5976 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 344 KB Output is correct
8 Correct 25 ms 5712 KB Output is correct
9 Correct 20 ms 5660 KB Output is correct
10 Correct 191 ms 5980 KB Output is correct
11 Correct 171 ms 6196 KB Output is correct
12 Correct 184 ms 6480 KB Output is correct
13 Correct 1 ms 348 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 1 ms 348 KB Output is correct
18 Correct 1 ms 348 KB Output is correct
19 Correct 282 ms 6712 KB Output is correct
20 Correct 263 ms 6224 KB Output is correct
21 Correct 268 ms 5980 KB Output is correct
22 Correct 194 ms 5980 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 16 ms 600 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 4 ms 604 KB Output is correct
4 Correct 5 ms 600 KB Output is correct
5 Correct 2 ms 600 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 600 KB Output is correct
10 Correct 56 ms 600 KB Output is correct
11 Correct 70 ms 600 KB Output is correct
12 Correct 60 ms 600 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 5 ms 604 KB Output is correct
15 Correct 3 ms 604 KB Output is correct
16 Correct 4 ms 604 KB Output is correct
17 Correct 28 ms 5364 KB Output is correct
18 Correct 30 ms 5468 KB Output is correct
19 Correct 28 ms 5208 KB Output is correct
20 Correct 4 ms 604 KB Output is correct
21 Correct 4 ms 612 KB Output is correct
22 Correct 1 ms 348 KB Output is correct
23 Correct 1 ms 348 KB Output is correct
24 Correct 1 ms 348 KB Output is correct
25 Correct 18 ms 5468 KB Output is correct
26 Correct 17 ms 5468 KB Output is correct
27 Correct 30 ms 5492 KB Output is correct
28 Correct 37 ms 5468 KB Output is correct
29 Correct 28 ms 5500 KB Output is correct
30 Correct 29 ms 5980 KB Output is correct
31 Correct 26 ms 600 KB Output is correct
32 Correct 5 ms 348 KB Output is correct
33 Correct 206 ms 5000 KB Output is correct
34 Correct 1 ms 348 KB Output is correct
35 Correct 322 ms 5976 KB Output is correct
36 Correct 1 ms 348 KB Output is correct
37 Correct 0 ms 344 KB Output is correct
38 Correct 25 ms 5712 KB Output is correct
39 Correct 20 ms 5660 KB Output is correct
40 Correct 191 ms 5980 KB Output is correct
41 Correct 171 ms 6196 KB Output is correct
42 Correct 184 ms 6480 KB Output is correct
43 Correct 1 ms 348 KB Output is correct
44 Correct 1 ms 348 KB Output is correct
45 Correct 0 ms 348 KB Output is correct
46 Correct 1 ms 344 KB Output is correct
47 Correct 1 ms 348 KB Output is correct
48 Correct 1 ms 348 KB Output is correct
49 Correct 282 ms 6712 KB Output is correct
50 Correct 263 ms 6224 KB Output is correct
51 Correct 268 ms 5980 KB Output is correct
52 Correct 194 ms 5980 KB Output is correct
53 Correct 33 ms 5244 KB Output is correct
54 Correct 39 ms 5468 KB Output is correct
55 Correct 35 ms 5208 KB Output is correct
56 Correct 5 ms 604 KB Output is correct
57 Correct 3 ms 604 KB Output is correct
58 Correct 280 ms 4444 KB Output is correct
59 Correct 315 ms 4492 KB Output is correct
60 Correct 432 ms 4468 KB Output is correct
61 Correct 278 ms 4444 KB Output is correct
62 Correct 321 ms 4444 KB Output is correct
63 Correct 442 ms 4444 KB Output is correct
64 Correct 229 ms 4440 KB Output is correct
65 Correct 300 ms 4440 KB Output is correct
66 Correct 325 ms 4444 KB Output is correct
67 Correct 18 ms 4176 KB Output is correct
68 Correct 18 ms 5212 KB Output is correct
69 Correct 18 ms 5208 KB Output is correct
70 Correct 36 ms 5212 KB Output is correct
71 Correct 32 ms 5208 KB Output is correct
72 Correct 29 ms 5284 KB Output is correct
73 Correct 31 ms 5468 KB Output is correct
74 Correct 41 ms 5448 KB Output is correct