#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl
#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)
template<typename T>
void amin(T &a, T b) {
a = min(a,b);
}
template<typename T>
void amax(T &a, T b) {
a = max(a,b);
}
#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif
/*
refs:
edi
https://oj.uz/submission/374896
tree dp for 38 points:
r[u] = sum(min(r[v],b[v]+1))
b[u] = sum(min(r[v]+1,b[v]))
key idea:
when a node is changed, only the dp values of its parents are affected
only update parents
=> hld
if the problem was on a line, we could use a segtree
each node [l,r] contains dp[x][y], which denotes the min cost to achieve comp[l] = x and comp[r] = y
can be merged easily
how to extend this idea to a tree?
each node belongs to exactly 1 chain in the hld
when processing a chain, only dp values in the chain will change
some nodes on the chain may have children that belong to other chains
for such children, their values wont change, so their contribution to dp[u][0/1] is fixed
because these values dont change, we can put them in the segtree leaf that denotes u
i.e for the segtree leaf that denotes u,
dp[0][0] = sum(min(r[v],b[v]+1)), v doesnt belong to the same chain as u
dp[1][1] = sum(min(r[v]+1,b[v])), v doesnt belong to the same chain as u
dp[0][1] = dp[1][0] = inf (range only contains 1 node, so starting comp = ending comp)
with all these values in the segtree, find the value at the root of the chain
now when we move up, we move to another chain
so we have to update the new dp values of the parent of the current chain (which may or may not be the root of the new chain)
tnis can be done by adding/subtracting some value from the dp values of the parent and then doing a point update on the segtree
repeat the same process for all chains
at the end of the process, we would have updated the dp chain that contains the root of the tree (which is 1)
when we want to get the answer, just find the dp of the chain that contains the root and return the min value of dp[x][y]
*/
const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;
template<typename T>
struct segtree {
// https://codeforces.com/blog/entry/18051
/*=======================================================*/
struct data {
array<array<int,2>,2> dp;
bool active;
data(){
rep(i,2){
rep(j,2){
dp[i][j] = inf1;
}
}
active = false;
}
};
data neutral = data();
data merge(data &left, data &right) {
if(!left.active and !right.active) return left;
if(!right.active) return left;
if(!left.active) return right;
data curr;
curr.active = true;
rep(i,2){
rep(j,2){
rep(k,2){
rep(l,2){
amin(curr.dp[i][l],left.dp[i][j]+right.dp[k][l]+(j!=k));
}
}
}
}
return curr;
}
void create(int i, T v) {
}
void modify(int i, T v) {
tr[i] = neutral;
tr[i].dp[0][0] = v.ff;
tr[i].dp[1][1] = v.ss;
tr[i].active = true;
}
/*=======================================================*/
int n;
vector<data> tr;
segtree() {
}
segtree(int siz) {
init(siz);
}
void init(int siz) {
n = siz;
tr.assign(2 * n, neutral);
}
void build(vector<T> &a, int siz) {
rep(i, siz) create(i + n, a[i]);
rev(i, n - 1, 1) tr[i] = merge(tr[i << 1], tr[i << 1 | 1]);
}
void pupd(int i, T v) {
modify(i + n, v);
for (i = (i + n) >> 1; i; i >>= 1) tr[i] = merge(tr[i << 1], tr[i << 1 | 1]);
}
data query(int l, int r) {
data resl = neutral, resr = neutral;
for (l += n, r += n; l <= r; l >>= 1, r >>= 1) {
if (l & 1) resl = merge(resl, tr[l++]);
if (!(r & 1)) resr = merge(tr[r--], resr);
}
return merge(resl, resr);
}
};
vector<int> adj[N];
vector<int> a(N); // 0 = none, 1 = cat, 2 = dog
vector<int> subsiz(N);
vector<int> depth(N), par(N);
void dfs1(int u, int p){
subsiz[u] = 1;
if(p != -1) par[u] = p;
trav(v,adj[u]){
if(v == p) conts;
depth[v] = depth[u]+1;
dfs1(v,u);
subsiz[u] += subsiz[v];
}
}
vector<int> pos(N), head(N), chain_siz(N);
int timer = 1;
void dfs2(int u, int p, int h){
pos[u] = timer++;
head[u] = h;
chain_siz[h]++;
pii mx = {-inf1,-1};
trav(v,adj[u]){
if(v == p) conts;
pii px = {subsiz[v],v};
amax(mx,px);
}
int heavy = mx.ss;
if(heavy != -1){
dfs2(heavy,u,h);
}
trav(v,adj[u]){
if(v == p or v == heavy) conts;
dfs2(v,u,v);
}
}
segtree<pii> st;
void initialize(int n, std::vector<int> A, std::vector<int> B) {
rep(i,n-1){
int u = A[i], v = B[i];
adj[u].pb(v), adj[v].pb(u);
}
dfs1(1,-1);
dfs2(1,-1,1);
st = segtree<pii>(n+5);
rep1(i,n) st.pupd(i,{0,0});
}
vector<int> sum1(N), sum2(N);
int get_ans(){
auto dp = st.query(pos[1],pos[1]+chain_siz[1]-1).dp;
int ans = inf1;
rep(i,2){
rep(j,2){
amin(ans,dp[i][j]);
}
}
return ans;
}
void rem(int u){
while(u){
if(u == head[u]){
auto dp = st.query(pos[u],pos[u]+chain_siz[u]-1).dp;
int cat = min(dp[0][0],dp[0][1]);
int dog = min(dp[1][0],dp[1][1]);
sum1[par[u]] -= min(cat,dog+1);
sum2[par[u]] -= min(cat+1,dog);
u = par[u];
}
else{
u = head[u];
}
}
}
void add(int u){
while(u){
{
pii px = {sum1[u],sum2[u]};
if(a[u] == 1){
px.ss = inf1;
}
else if(a[u] == 2){
px.ff = inf1;
}
st.pupd(pos[u],px);
}
if(u == head[u]){
auto dp = st.query(pos[u],pos[u]+chain_siz[u]-1).dp;
int cat = min(dp[0][0],dp[0][1]);
int dog = min(dp[1][0],dp[1][1]);
sum1[par[u]] += min(cat,dog+1);
sum2[par[u]] += min(cat+1,dog);
u = par[u];
}
else{
u = head[u];
}
}
}
void change_state(int u, int val){
rem(u);
a[u] = val;
add(u);
}
int cat(int v) {
change_state(v,1);
return get_ans();
}
int dog(int v) {
change_state(v,2);
return get_ans();
}
int neighbor(int v) {
change_state(v,0);
return get_ans();
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
6236 KB |
Output is correct |
2 |
Correct |
3 ms |
6236 KB |
Output is correct |
3 |
Correct |
2 ms |
6236 KB |
Output is correct |
4 |
Correct |
2 ms |
6236 KB |
Output is correct |
5 |
Correct |
2 ms |
6236 KB |
Output is correct |
6 |
Correct |
3 ms |
6236 KB |
Output is correct |
7 |
Correct |
2 ms |
6256 KB |
Output is correct |
8 |
Correct |
3 ms |
6236 KB |
Output is correct |
9 |
Correct |
2 ms |
6236 KB |
Output is correct |
10 |
Correct |
2 ms |
6236 KB |
Output is correct |
11 |
Correct |
3 ms |
6236 KB |
Output is correct |
12 |
Correct |
3 ms |
6236 KB |
Output is correct |
13 |
Correct |
2 ms |
6236 KB |
Output is correct |
14 |
Correct |
3 ms |
6236 KB |
Output is correct |
15 |
Correct |
3 ms |
6236 KB |
Output is correct |
16 |
Correct |
2 ms |
6236 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
6236 KB |
Output is correct |
2 |
Correct |
3 ms |
6236 KB |
Output is correct |
3 |
Correct |
2 ms |
6236 KB |
Output is correct |
4 |
Correct |
2 ms |
6236 KB |
Output is correct |
5 |
Correct |
2 ms |
6236 KB |
Output is correct |
6 |
Correct |
3 ms |
6236 KB |
Output is correct |
7 |
Correct |
2 ms |
6256 KB |
Output is correct |
8 |
Correct |
3 ms |
6236 KB |
Output is correct |
9 |
Correct |
2 ms |
6236 KB |
Output is correct |
10 |
Correct |
2 ms |
6236 KB |
Output is correct |
11 |
Correct |
3 ms |
6236 KB |
Output is correct |
12 |
Correct |
3 ms |
6236 KB |
Output is correct |
13 |
Correct |
2 ms |
6236 KB |
Output is correct |
14 |
Correct |
3 ms |
6236 KB |
Output is correct |
15 |
Correct |
3 ms |
6236 KB |
Output is correct |
16 |
Correct |
2 ms |
6236 KB |
Output is correct |
17 |
Correct |
5 ms |
6236 KB |
Output is correct |
18 |
Correct |
4 ms |
6236 KB |
Output is correct |
19 |
Correct |
3 ms |
6236 KB |
Output is correct |
20 |
Correct |
3 ms |
6236 KB |
Output is correct |
21 |
Correct |
3 ms |
6236 KB |
Output is correct |
22 |
Correct |
3 ms |
6236 KB |
Output is correct |
23 |
Correct |
6 ms |
6236 KB |
Output is correct |
24 |
Correct |
4 ms |
6236 KB |
Output is correct |
25 |
Correct |
4 ms |
6312 KB |
Output is correct |
26 |
Correct |
3 ms |
6240 KB |
Output is correct |
27 |
Correct |
3 ms |
6236 KB |
Output is correct |
28 |
Correct |
3 ms |
6240 KB |
Output is correct |
29 |
Correct |
4 ms |
6244 KB |
Output is correct |
30 |
Correct |
3 ms |
6236 KB |
Output is correct |
31 |
Correct |
3 ms |
6244 KB |
Output is correct |
32 |
Correct |
4 ms |
6236 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
6236 KB |
Output is correct |
2 |
Correct |
3 ms |
6236 KB |
Output is correct |
3 |
Correct |
2 ms |
6236 KB |
Output is correct |
4 |
Correct |
2 ms |
6236 KB |
Output is correct |
5 |
Correct |
2 ms |
6236 KB |
Output is correct |
6 |
Correct |
3 ms |
6236 KB |
Output is correct |
7 |
Correct |
2 ms |
6256 KB |
Output is correct |
8 |
Correct |
3 ms |
6236 KB |
Output is correct |
9 |
Correct |
2 ms |
6236 KB |
Output is correct |
10 |
Correct |
2 ms |
6236 KB |
Output is correct |
11 |
Correct |
3 ms |
6236 KB |
Output is correct |
12 |
Correct |
3 ms |
6236 KB |
Output is correct |
13 |
Correct |
2 ms |
6236 KB |
Output is correct |
14 |
Correct |
3 ms |
6236 KB |
Output is correct |
15 |
Correct |
3 ms |
6236 KB |
Output is correct |
16 |
Correct |
2 ms |
6236 KB |
Output is correct |
17 |
Correct |
5 ms |
6236 KB |
Output is correct |
18 |
Correct |
4 ms |
6236 KB |
Output is correct |
19 |
Correct |
3 ms |
6236 KB |
Output is correct |
20 |
Correct |
3 ms |
6236 KB |
Output is correct |
21 |
Correct |
3 ms |
6236 KB |
Output is correct |
22 |
Correct |
3 ms |
6236 KB |
Output is correct |
23 |
Correct |
6 ms |
6236 KB |
Output is correct |
24 |
Correct |
4 ms |
6236 KB |
Output is correct |
25 |
Correct |
4 ms |
6312 KB |
Output is correct |
26 |
Correct |
3 ms |
6240 KB |
Output is correct |
27 |
Correct |
3 ms |
6236 KB |
Output is correct |
28 |
Correct |
3 ms |
6240 KB |
Output is correct |
29 |
Correct |
4 ms |
6244 KB |
Output is correct |
30 |
Correct |
3 ms |
6236 KB |
Output is correct |
31 |
Correct |
3 ms |
6244 KB |
Output is correct |
32 |
Correct |
4 ms |
6236 KB |
Output is correct |
33 |
Correct |
363 ms |
11396 KB |
Output is correct |
34 |
Correct |
122 ms |
12068 KB |
Output is correct |
35 |
Correct |
339 ms |
10148 KB |
Output is correct |
36 |
Correct |
593 ms |
14980 KB |
Output is correct |
37 |
Correct |
21 ms |
9052 KB |
Output is correct |
38 |
Correct |
666 ms |
17156 KB |
Output is correct |
39 |
Correct |
670 ms |
17164 KB |
Output is correct |
40 |
Correct |
608 ms |
17172 KB |
Output is correct |
41 |
Correct |
616 ms |
17164 KB |
Output is correct |
42 |
Correct |
564 ms |
17216 KB |
Output is correct |
43 |
Correct |
637 ms |
17164 KB |
Output is correct |
44 |
Correct |
584 ms |
17168 KB |
Output is correct |
45 |
Correct |
598 ms |
17192 KB |
Output is correct |
46 |
Correct |
612 ms |
17216 KB |
Output is correct |
47 |
Correct |
643 ms |
17180 KB |
Output is correct |
48 |
Correct |
173 ms |
14252 KB |
Output is correct |
49 |
Correct |
177 ms |
15940 KB |
Output is correct |
50 |
Correct |
57 ms |
8600 KB |
Output is correct |
51 |
Correct |
64 ms |
10452 KB |
Output is correct |
52 |
Correct |
27 ms |
8280 KB |
Output is correct |
53 |
Correct |
316 ms |
16212 KB |
Output is correct |
54 |
Correct |
201 ms |
10584 KB |
Output is correct |
55 |
Correct |
521 ms |
14120 KB |
Output is correct |
56 |
Correct |
298 ms |
11560 KB |
Output is correct |
57 |
Correct |
410 ms |
15516 KB |
Output is correct |
58 |
Correct |
39 ms |
10708 KB |
Output is correct |
59 |
Correct |
75 ms |
9960 KB |
Output is correct |
60 |
Correct |
155 ms |
15060 KB |
Output is correct |
61 |
Correct |
174 ms |
15324 KB |
Output is correct |
62 |
Correct |
112 ms |
13460 KB |
Output is correct |
63 |
Correct |
75 ms |
12996 KB |
Output is correct |
64 |
Correct |
76 ms |
14584 KB |
Output is correct |
65 |
Correct |
115 ms |
18936 KB |
Output is correct |
66 |
Correct |
109 ms |
9820 KB |
Output is correct |
67 |
Correct |
94 ms |
15444 KB |
Output is correct |
68 |
Correct |
242 ms |
19380 KB |
Output is correct |
69 |
Correct |
49 ms |
7764 KB |
Output is correct |
70 |
Correct |
12 ms |
6488 KB |
Output is correct |
71 |
Correct |
97 ms |
12152 KB |
Output is correct |
72 |
Correct |
133 ms |
16980 KB |
Output is correct |
73 |
Correct |
305 ms |
21460 KB |
Output is correct |
74 |
Correct |
321 ms |
19284 KB |
Output is correct |
75 |
Correct |
256 ms |
21564 KB |
Output is correct |
76 |
Correct |
227 ms |
20684 KB |
Output is correct |
77 |
Correct |
317 ms |
19696 KB |
Output is correct |