Submission #917162

# Submission time Handle Problem Language Result Execution time Memory
917162 2024-01-27T10:44:49 Z GrindMachine Cats or Dogs (JOI18_catdog) C++17
100 / 100
670 ms 21564 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*

refs:
edi
https://oj.uz/submission/374896

tree dp for 38 points:
r[u] = sum(min(r[v],b[v]+1))
b[u] = sum(min(r[v]+1,b[v]))

key idea:
when a node is changed, only the dp values of its parents are affected
only update parents
=> hld

if the problem was on a line, we could use a segtree
each node [l,r] contains dp[x][y], which denotes the min cost to achieve comp[l] = x and comp[r] = y
can be merged easily

how to extend this idea to a tree?

each node belongs to exactly 1 chain in the hld
when processing a chain, only dp values in the chain will change
some nodes on the chain may have children that belong to other chains
for such children, their values wont change, so their contribution to dp[u][0/1] is fixed
because these values dont change, we can put them in the segtree leaf that denotes u
i.e for the segtree leaf that denotes u,
dp[0][0] = sum(min(r[v],b[v]+1)), v doesnt belong to the same chain as u
dp[1][1] = sum(min(r[v]+1,b[v])), v doesnt belong to the same chain as u
dp[0][1] = dp[1][0] = inf (range only contains 1 node, so starting comp = ending comp)

with all these values in the segtree, find the value at the root of the chain
now when we move up, we move to another chain
so we have to update the new dp values of the parent of the current chain (which may or may not be the root of the new chain)
tnis can be done by adding/subtracting some value from the dp values of the parent and then doing a point update on the segtree
repeat the same process for all chains
at the end of the process, we would have updated the dp chain that contains the root of the tree (which is 1)
when we want to get the answer, just find the dp of the chain that contains the root and return the min value of dp[x][y]

*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

template<typename T>
struct segtree {
    // https://codeforces.com/blog/entry/18051

    /*=======================================================*/

    struct data {
        array<array<int,2>,2> dp;
        bool active;

        data(){
            rep(i,2){
                rep(j,2){
                    dp[i][j] = inf1;
                }
            }
            active = false;
        }
    };

    data neutral = data();

    data merge(data &left, data &right) {
        if(!left.active and !right.active) return left;
        if(!right.active) return left;
        if(!left.active) return right;
        
        data curr;
        curr.active = true;

        rep(i,2){
            rep(j,2){
                rep(k,2){
                    rep(l,2){
                        amin(curr.dp[i][l],left.dp[i][j]+right.dp[k][l]+(j!=k));
                    }
                }
            }
        }

        return curr;
    }

    void create(int i, T v) {

    }

    void modify(int i, T v) {
        tr[i] = neutral;
        tr[i].dp[0][0] = v.ff;
        tr[i].dp[1][1] = v.ss;
        tr[i].active = true;
    }

    /*=======================================================*/

    int n;
    vector<data> tr;

    segtree() {

    }

    segtree(int siz) {
        init(siz);
    }

    void init(int siz) {
        n = siz;
        tr.assign(2 * n, neutral);
    }

    void build(vector<T> &a, int siz) {
        rep(i, siz) create(i + n, a[i]);
        rev(i, n - 1, 1) tr[i] = merge(tr[i << 1], tr[i << 1 | 1]);
    }

    void pupd(int i, T v) {
        modify(i + n, v);
        for (i = (i + n) >> 1; i; i >>= 1) tr[i] = merge(tr[i << 1], tr[i << 1 | 1]);
    }

    data query(int l, int r) {
        data resl = neutral, resr = neutral;

        for (l += n, r += n; l <= r; l >>= 1, r >>= 1) {
            if (l & 1) resl = merge(resl, tr[l++]);
            if (!(r & 1)) resr = merge(tr[r--], resr);
        }

        return merge(resl, resr);
    }
};

vector<int> adj[N];
vector<int> a(N); // 0 = none, 1 = cat, 2 = dog
vector<int> subsiz(N);
vector<int> depth(N), par(N);

void dfs1(int u, int p){
    subsiz[u] = 1;
    if(p != -1) par[u] = p;
    trav(v,adj[u]){
        if(v == p) conts;
        depth[v] = depth[u]+1;
        dfs1(v,u);
        subsiz[u] += subsiz[v];
    }
}

vector<int> pos(N), head(N), chain_siz(N);
int timer = 1;

void dfs2(int u, int p, int h){
    pos[u] = timer++;
    head[u] = h;
    chain_siz[h]++;

    pii mx = {-inf1,-1};
    trav(v,adj[u]){
        if(v == p) conts;
        pii px = {subsiz[v],v};
        amax(mx,px);
    }

    int heavy = mx.ss;
    if(heavy != -1){
        dfs2(heavy,u,h);
    }

    trav(v,adj[u]){
        if(v == p or v == heavy) conts;
        dfs2(v,u,v);
    }
}

segtree<pii> st;

void initialize(int n, std::vector<int> A, std::vector<int> B) {
    rep(i,n-1){
        int u = A[i], v = B[i];
        adj[u].pb(v), adj[v].pb(u);
    }

    dfs1(1,-1);
    dfs2(1,-1,1);
    st = segtree<pii>(n+5);
    rep1(i,n) st.pupd(i,{0,0});
}

vector<int> sum1(N), sum2(N);

int get_ans(){
    auto dp = st.query(pos[1],pos[1]+chain_siz[1]-1).dp;

    int ans = inf1;

    rep(i,2){
        rep(j,2){
            amin(ans,dp[i][j]);
        }
    }

    return ans;
}

void rem(int u){
    while(u){
        if(u == head[u]){
            auto dp = st.query(pos[u],pos[u]+chain_siz[u]-1).dp;
            int cat = min(dp[0][0],dp[0][1]);
            int dog = min(dp[1][0],dp[1][1]);
            sum1[par[u]] -= min(cat,dog+1);
            sum2[par[u]] -= min(cat+1,dog);
            u = par[u];
        }
        else{
            u = head[u];
        }
    }
}

void add(int u){
    while(u){
        {
            pii px = {sum1[u],sum2[u]};

            if(a[u] == 1){
                px.ss = inf1;
            }
            else if(a[u] == 2){
                px.ff = inf1;
            }

            st.pupd(pos[u],px);
        }

        if(u == head[u]){
            auto dp = st.query(pos[u],pos[u]+chain_siz[u]-1).dp;
            int cat = min(dp[0][0],dp[0][1]);
            int dog = min(dp[1][0],dp[1][1]);
            sum1[par[u]] += min(cat,dog+1);
            sum2[par[u]] += min(cat+1,dog);
            u = par[u];
        }
        else{
            u = head[u];
        }
    }
}

void change_state(int u, int val){
    rem(u);
    a[u] = val;
    add(u);
}
 
int cat(int v) {
    change_state(v,1);
    return get_ans();
}
 
int dog(int v) {
    change_state(v,2);
    return get_ans();
}
 
int neighbor(int v) {
    change_state(v,0);
    return get_ans();
}
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6236 KB Output is correct
2 Correct 3 ms 6236 KB Output is correct
3 Correct 2 ms 6236 KB Output is correct
4 Correct 2 ms 6236 KB Output is correct
5 Correct 2 ms 6236 KB Output is correct
6 Correct 3 ms 6236 KB Output is correct
7 Correct 2 ms 6256 KB Output is correct
8 Correct 3 ms 6236 KB Output is correct
9 Correct 2 ms 6236 KB Output is correct
10 Correct 2 ms 6236 KB Output is correct
11 Correct 3 ms 6236 KB Output is correct
12 Correct 3 ms 6236 KB Output is correct
13 Correct 2 ms 6236 KB Output is correct
14 Correct 3 ms 6236 KB Output is correct
15 Correct 3 ms 6236 KB Output is correct
16 Correct 2 ms 6236 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6236 KB Output is correct
2 Correct 3 ms 6236 KB Output is correct
3 Correct 2 ms 6236 KB Output is correct
4 Correct 2 ms 6236 KB Output is correct
5 Correct 2 ms 6236 KB Output is correct
6 Correct 3 ms 6236 KB Output is correct
7 Correct 2 ms 6256 KB Output is correct
8 Correct 3 ms 6236 KB Output is correct
9 Correct 2 ms 6236 KB Output is correct
10 Correct 2 ms 6236 KB Output is correct
11 Correct 3 ms 6236 KB Output is correct
12 Correct 3 ms 6236 KB Output is correct
13 Correct 2 ms 6236 KB Output is correct
14 Correct 3 ms 6236 KB Output is correct
15 Correct 3 ms 6236 KB Output is correct
16 Correct 2 ms 6236 KB Output is correct
17 Correct 5 ms 6236 KB Output is correct
18 Correct 4 ms 6236 KB Output is correct
19 Correct 3 ms 6236 KB Output is correct
20 Correct 3 ms 6236 KB Output is correct
21 Correct 3 ms 6236 KB Output is correct
22 Correct 3 ms 6236 KB Output is correct
23 Correct 6 ms 6236 KB Output is correct
24 Correct 4 ms 6236 KB Output is correct
25 Correct 4 ms 6312 KB Output is correct
26 Correct 3 ms 6240 KB Output is correct
27 Correct 3 ms 6236 KB Output is correct
28 Correct 3 ms 6240 KB Output is correct
29 Correct 4 ms 6244 KB Output is correct
30 Correct 3 ms 6236 KB Output is correct
31 Correct 3 ms 6244 KB Output is correct
32 Correct 4 ms 6236 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6236 KB Output is correct
2 Correct 3 ms 6236 KB Output is correct
3 Correct 2 ms 6236 KB Output is correct
4 Correct 2 ms 6236 KB Output is correct
5 Correct 2 ms 6236 KB Output is correct
6 Correct 3 ms 6236 KB Output is correct
7 Correct 2 ms 6256 KB Output is correct
8 Correct 3 ms 6236 KB Output is correct
9 Correct 2 ms 6236 KB Output is correct
10 Correct 2 ms 6236 KB Output is correct
11 Correct 3 ms 6236 KB Output is correct
12 Correct 3 ms 6236 KB Output is correct
13 Correct 2 ms 6236 KB Output is correct
14 Correct 3 ms 6236 KB Output is correct
15 Correct 3 ms 6236 KB Output is correct
16 Correct 2 ms 6236 KB Output is correct
17 Correct 5 ms 6236 KB Output is correct
18 Correct 4 ms 6236 KB Output is correct
19 Correct 3 ms 6236 KB Output is correct
20 Correct 3 ms 6236 KB Output is correct
21 Correct 3 ms 6236 KB Output is correct
22 Correct 3 ms 6236 KB Output is correct
23 Correct 6 ms 6236 KB Output is correct
24 Correct 4 ms 6236 KB Output is correct
25 Correct 4 ms 6312 KB Output is correct
26 Correct 3 ms 6240 KB Output is correct
27 Correct 3 ms 6236 KB Output is correct
28 Correct 3 ms 6240 KB Output is correct
29 Correct 4 ms 6244 KB Output is correct
30 Correct 3 ms 6236 KB Output is correct
31 Correct 3 ms 6244 KB Output is correct
32 Correct 4 ms 6236 KB Output is correct
33 Correct 363 ms 11396 KB Output is correct
34 Correct 122 ms 12068 KB Output is correct
35 Correct 339 ms 10148 KB Output is correct
36 Correct 593 ms 14980 KB Output is correct
37 Correct 21 ms 9052 KB Output is correct
38 Correct 666 ms 17156 KB Output is correct
39 Correct 670 ms 17164 KB Output is correct
40 Correct 608 ms 17172 KB Output is correct
41 Correct 616 ms 17164 KB Output is correct
42 Correct 564 ms 17216 KB Output is correct
43 Correct 637 ms 17164 KB Output is correct
44 Correct 584 ms 17168 KB Output is correct
45 Correct 598 ms 17192 KB Output is correct
46 Correct 612 ms 17216 KB Output is correct
47 Correct 643 ms 17180 KB Output is correct
48 Correct 173 ms 14252 KB Output is correct
49 Correct 177 ms 15940 KB Output is correct
50 Correct 57 ms 8600 KB Output is correct
51 Correct 64 ms 10452 KB Output is correct
52 Correct 27 ms 8280 KB Output is correct
53 Correct 316 ms 16212 KB Output is correct
54 Correct 201 ms 10584 KB Output is correct
55 Correct 521 ms 14120 KB Output is correct
56 Correct 298 ms 11560 KB Output is correct
57 Correct 410 ms 15516 KB Output is correct
58 Correct 39 ms 10708 KB Output is correct
59 Correct 75 ms 9960 KB Output is correct
60 Correct 155 ms 15060 KB Output is correct
61 Correct 174 ms 15324 KB Output is correct
62 Correct 112 ms 13460 KB Output is correct
63 Correct 75 ms 12996 KB Output is correct
64 Correct 76 ms 14584 KB Output is correct
65 Correct 115 ms 18936 KB Output is correct
66 Correct 109 ms 9820 KB Output is correct
67 Correct 94 ms 15444 KB Output is correct
68 Correct 242 ms 19380 KB Output is correct
69 Correct 49 ms 7764 KB Output is correct
70 Correct 12 ms 6488 KB Output is correct
71 Correct 97 ms 12152 KB Output is correct
72 Correct 133 ms 16980 KB Output is correct
73 Correct 305 ms 21460 KB Output is correct
74 Correct 321 ms 19284 KB Output is correct
75 Correct 256 ms 21564 KB Output is correct
76 Correct 227 ms 20684 KB Output is correct
77 Correct 317 ms 19696 KB Output is correct