Submission #917126

# Submission time Handle Problem Language Result Execution time Memory
917126 2024-01-27T08:55:22 Z GrindMachine Cats or Dogs (JOI18_catdog) C++17
100 / 100
553 ms 22096 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*

refs:
edi
https://oj.uz/submission/374896

*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

template<typename T>
struct segtree {
    // https://codeforces.com/blog/entry/18051

    /*=======================================================*/

    struct data {
        array<array<int,2>,2> dp;
        bool active;

        data(){
            rep(i,2){
                rep(j,2){
                    dp[i][j] = inf1;
                }
            }
            active = false;
        }
    };

    data neutral = data();

    data merge(data &left, data &right) {
        if(!left.active and !right.active) return left;
        if(!right.active) return left;
        if(!left.active) return right;
        
        data curr;
        curr.active = true;

        rep(i,2){
            rep(j,2){
                rep(k,2){
                    rep(l,2){
                        amin(curr.dp[i][l],left.dp[i][j]+right.dp[k][l]+(j!=k));
                    }
                }
            }
        }

        return curr;
    }

    void create(int i, T v) {

    }

    void modify(int i, T v) {
        tr[i] = neutral;
        tr[i].dp[0][0] = v.ff;
        tr[i].dp[1][1] = v.ss;
        tr[i].active = true;
    }

    /*=======================================================*/

    int n;
    vector<data> tr;

    segtree() {

    }

    segtree(int siz) {
        init(siz);
    }

    void init(int siz) {
        n = siz;
        tr.assign(2 * n, neutral);
    }

    void build(vector<T> &a, int siz) {
        rep(i, siz) create(i + n, a[i]);
        rev(i, n - 1, 1) tr[i] = merge(tr[i << 1], tr[i << 1 | 1]);
    }

    void pupd(int i, T v) {
        modify(i + n, v);
        for (i = (i + n) >> 1; i; i >>= 1) tr[i] = merge(tr[i << 1], tr[i << 1 | 1]);
    }

    data query(int l, int r) {
        data resl = neutral, resr = neutral;

        for (l += n, r += n; l <= r; l >>= 1, r >>= 1) {
            if (l & 1) resl = merge(resl, tr[l++]);
            if (!(r & 1)) resr = merge(tr[r--], resr);
        }

        return merge(resl, resr);
    }
};

vector<int> adj[N];
vector<int> a(N); // 0 = none, 1 = cat, 2 = dog
vector<int> subsiz(N);
vector<int> depth(N), par(N);

void dfs1(int u, int p){
    subsiz[u] = 1;
    if(p != -1) par[u] = p;
    trav(v,adj[u]){
        if(v == p) conts;
        depth[v] = depth[u]+1;
        dfs1(v,u);
        subsiz[u] += subsiz[v];
    }
}

vector<int> pos(N), head(N), chain_siz(N);
int timer = 1;

void dfs2(int u, int p, int h){
    pos[u] = timer++;
    head[u] = h;
    chain_siz[h]++;

    pii mx = {-inf1,-1};
    trav(v,adj[u]){
        if(v == p) conts;
        pii px = {subsiz[v],v};
        amax(mx,px);
    }

    int heavy = mx.ss;
    if(heavy != -1){
        dfs2(heavy,u,h);
    }

    trav(v,adj[u]){
        if(v == p or v == heavy) conts;
        dfs2(v,u,v);
    }
}

segtree<pii> st;

void initialize(int n, std::vector<int> A, std::vector<int> B) {
    rep(i,n-1){
        int u = A[i], v = B[i];
        adj[u].pb(v), adj[v].pb(u);
    }

    dfs1(1,-1);
    dfs2(1,-1,1);
    st = segtree<pii>(n+5);
    rep1(i,n) st.pupd(i,{0,0});
}

vector<int> sum1(N), sum2(N);

int get_ans(){
    auto dp = st.query(pos[1],pos[1]+chain_siz[1]-1).dp;

    int ans = inf1;

    rep(i,2){
        rep(j,2){
            amin(ans,dp[i][j]);
        }
    }

    return ans;
}

void rem(int u){
    while(u){
        if(u == head[u]){
            auto dp = st.query(pos[u],pos[u]+chain_siz[u]-1).dp;
            int cat = min(dp[0][0],dp[0][1]);
            int dog = min(dp[1][0],dp[1][1]);
            sum1[par[u]] -= min(cat,dog+1);
            sum2[par[u]] -= min(cat+1,dog);
            u = par[u];
        }
        else{
            u = head[u];
        }
    }
}

void add(int u){
    while(u){
        {
            pii px = {sum1[u],sum2[u]};

            if(a[u] == 1){
                px.ss = inf1;
            }
            else if(a[u] == 2){
                px.ff = inf1;
            }

            st.pupd(pos[u],px);
        }

        if(u == head[u]){
            auto dp = st.query(pos[u],pos[u]+chain_siz[u]-1).dp;
            int cat = min(dp[0][0],dp[0][1]);
            int dog = min(dp[1][0],dp[1][1]);
            sum1[par[u]] += min(cat,dog+1);
            sum2[par[u]] += min(cat+1,dog);
            u = par[u];
        }
        else{
            u = head[u];
        }
    }
}

void change_state(int u, int val){
    rem(u);
    a[u] = val;
    add(u);
}
 
int cat(int v) {
    change_state(v,1);
    return get_ans();
}
 
int dog(int v) {
    change_state(v,2);
    return get_ans();
}
 
int neighbor(int v) {
    change_state(v,0);
    return get_ans();
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6232 KB Output is correct
2 Correct 2 ms 6236 KB Output is correct
3 Correct 2 ms 6236 KB Output is correct
4 Correct 2 ms 6232 KB Output is correct
5 Correct 2 ms 6232 KB Output is correct
6 Correct 2 ms 6236 KB Output is correct
7 Correct 3 ms 6232 KB Output is correct
8 Correct 3 ms 6232 KB Output is correct
9 Correct 3 ms 6236 KB Output is correct
10 Correct 2 ms 6236 KB Output is correct
11 Correct 2 ms 6232 KB Output is correct
12 Correct 2 ms 6136 KB Output is correct
13 Correct 2 ms 6236 KB Output is correct
14 Correct 2 ms 6236 KB Output is correct
15 Correct 3 ms 6236 KB Output is correct
16 Correct 3 ms 6236 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6232 KB Output is correct
2 Correct 2 ms 6236 KB Output is correct
3 Correct 2 ms 6236 KB Output is correct
4 Correct 2 ms 6232 KB Output is correct
5 Correct 2 ms 6232 KB Output is correct
6 Correct 2 ms 6236 KB Output is correct
7 Correct 3 ms 6232 KB Output is correct
8 Correct 3 ms 6232 KB Output is correct
9 Correct 3 ms 6236 KB Output is correct
10 Correct 2 ms 6236 KB Output is correct
11 Correct 2 ms 6232 KB Output is correct
12 Correct 2 ms 6136 KB Output is correct
13 Correct 2 ms 6236 KB Output is correct
14 Correct 2 ms 6236 KB Output is correct
15 Correct 3 ms 6236 KB Output is correct
16 Correct 3 ms 6236 KB Output is correct
17 Correct 4 ms 6236 KB Output is correct
18 Correct 4 ms 6236 KB Output is correct
19 Correct 4 ms 6236 KB Output is correct
20 Correct 2 ms 6236 KB Output is correct
21 Correct 3 ms 6236 KB Output is correct
22 Correct 4 ms 6236 KB Output is correct
23 Correct 6 ms 6232 KB Output is correct
24 Correct 5 ms 6236 KB Output is correct
25 Correct 3 ms 6488 KB Output is correct
26 Correct 3 ms 6232 KB Output is correct
27 Correct 3 ms 6236 KB Output is correct
28 Correct 3 ms 6236 KB Output is correct
29 Correct 4 ms 6236 KB Output is correct
30 Correct 3 ms 6232 KB Output is correct
31 Correct 3 ms 6236 KB Output is correct
32 Correct 3 ms 6436 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 6232 KB Output is correct
2 Correct 2 ms 6236 KB Output is correct
3 Correct 2 ms 6236 KB Output is correct
4 Correct 2 ms 6232 KB Output is correct
5 Correct 2 ms 6232 KB Output is correct
6 Correct 2 ms 6236 KB Output is correct
7 Correct 3 ms 6232 KB Output is correct
8 Correct 3 ms 6232 KB Output is correct
9 Correct 3 ms 6236 KB Output is correct
10 Correct 2 ms 6236 KB Output is correct
11 Correct 2 ms 6232 KB Output is correct
12 Correct 2 ms 6136 KB Output is correct
13 Correct 2 ms 6236 KB Output is correct
14 Correct 2 ms 6236 KB Output is correct
15 Correct 3 ms 6236 KB Output is correct
16 Correct 3 ms 6236 KB Output is correct
17 Correct 4 ms 6236 KB Output is correct
18 Correct 4 ms 6236 KB Output is correct
19 Correct 4 ms 6236 KB Output is correct
20 Correct 2 ms 6236 KB Output is correct
21 Correct 3 ms 6236 KB Output is correct
22 Correct 4 ms 6236 KB Output is correct
23 Correct 6 ms 6232 KB Output is correct
24 Correct 5 ms 6236 KB Output is correct
25 Correct 3 ms 6488 KB Output is correct
26 Correct 3 ms 6232 KB Output is correct
27 Correct 3 ms 6236 KB Output is correct
28 Correct 3 ms 6236 KB Output is correct
29 Correct 4 ms 6236 KB Output is correct
30 Correct 3 ms 6232 KB Output is correct
31 Correct 3 ms 6236 KB Output is correct
32 Correct 3 ms 6436 KB Output is correct
33 Correct 347 ms 11392 KB Output is correct
34 Correct 108 ms 11848 KB Output is correct
35 Correct 306 ms 10300 KB Output is correct
36 Correct 511 ms 16756 KB Output is correct
37 Correct 20 ms 9052 KB Output is correct
38 Correct 545 ms 17800 KB Output is correct
39 Correct 552 ms 17988 KB Output is correct
40 Correct 521 ms 17656 KB Output is correct
41 Correct 552 ms 17828 KB Output is correct
42 Correct 486 ms 17996 KB Output is correct
43 Correct 514 ms 17852 KB Output is correct
44 Correct 503 ms 17812 KB Output is correct
45 Correct 530 ms 17820 KB Output is correct
46 Correct 507 ms 17732 KB Output is correct
47 Correct 553 ms 17864 KB Output is correct
48 Correct 132 ms 14544 KB Output is correct
49 Correct 158 ms 16664 KB Output is correct
50 Correct 55 ms 8540 KB Output is correct
51 Correct 66 ms 10300 KB Output is correct
52 Correct 25 ms 8284 KB Output is correct
53 Correct 249 ms 16548 KB Output is correct
54 Correct 179 ms 10844 KB Output is correct
55 Correct 471 ms 14488 KB Output is correct
56 Correct 275 ms 11800 KB Output is correct
57 Correct 377 ms 16248 KB Output is correct
58 Correct 33 ms 10456 KB Output is correct
59 Correct 61 ms 10072 KB Output is correct
60 Correct 134 ms 15560 KB Output is correct
61 Correct 156 ms 16024 KB Output is correct
62 Correct 89 ms 14024 KB Output is correct
63 Correct 64 ms 13392 KB Output is correct
64 Correct 71 ms 14680 KB Output is correct
65 Correct 95 ms 19540 KB Output is correct
66 Correct 104 ms 9944 KB Output is correct
67 Correct 89 ms 15440 KB Output is correct
68 Correct 196 ms 20092 KB Output is correct
69 Correct 55 ms 7992 KB Output is correct
70 Correct 11 ms 6492 KB Output is correct
71 Correct 95 ms 12404 KB Output is correct
72 Correct 131 ms 17508 KB Output is correct
73 Correct 301 ms 22096 KB Output is correct
74 Correct 308 ms 20020 KB Output is correct
75 Correct 232 ms 22096 KB Output is correct
76 Correct 227 ms 21328 KB Output is correct
77 Correct 309 ms 20304 KB Output is correct