Submission #912049

# Submission time Handle Problem Language Result Execution time Memory
912049 2024-01-19T07:11:05 Z GrindMachine Gift (IZhO18_nicegift) C++17
100 / 100
897 ms 85172 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*

refs:
https://oj.uz/submission/908159

sum%k != 0 or mx > sum/k => not possible
otherwise, always possible

pick the k max elems and subtract 1 from all of them
can be implemented using a priority_queue
passes the first 3 subtasks

full solution idea:
again, pick the k max elems
let their values be v1 <= v2 <= ... <= vk
we can subtract at most v1 from all these guys
because the maximum we can subtract is v1, lets try to subtract v1
when will this be invalid?

recollect the condition from the start:
sum%k == 0 and mx <= sum/k for a solution to exist
the value of sum%k doesnt change after any operation, so if it's 0 in the beginning, then we dont have to care about it
what about mx <= sum/k?
lets say we subtract x

1) new maximum = vk
we want vk-x <= (sum-k*x)/k
after simplification, we get vk <= sum/k, which is already satisfied
so we dont have to worry if the new maximum = vk

2) new maximum = max guy that is not chosen in the op (let it be w)
w <= (sum-k*x)/k
after simplification, we get x <= (sum-w*k)/k
we cant subtract v1 if w > (sum-v1*k)/k
in this case, the max value we can subtract is (sum-w*k)/k
otherwise, we can subtract v1

x = min(v1,(sum-w*k)/k)

if v1 is subtracted, then at least 1 guy becomes 0 in the op
if (sum-w*k)/k is subtracted, then no one may become 0 in this op
but it's guaranteed that at least 1 guy becomes 0 in the next op (because after the op, w = sum/k)
so the #of ops would be minimal

gives a bound of 2*n*k guys in total
this is a loose bound, probably possible to prove a tighter bound because the solution expects around 1.5*n*k ops, but not sure how to do it

*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

void solve(int test_case)
{
    ll n,k; cin >> n >> k;
    vector<ll> a(n+5);
    rep1(i,n) cin >> a[i];
 
    ll sum = 0;
    rep1(i,n) sum += a[i];
 
    if(sum%k){
        cout << -1 << endl;
        return;
    }
 
    ll mx = *max_element(all(a));
    if(mx > sum/k){
        cout << -1 << endl;
        return;
    }
 
    priority_queue<pll> pq;
    rep1(i,n) pq.push({a[i],i});
 
    vector<vector<ll>> ans;
 
    while(true){        
        if(!pq.top().ff) break;

        vector<ll> curr;
        curr.pb(0);
        
        rep1(iter,k){
            auto [val,i] = pq.top();
            pq.pop();
            curr.pb(i);
        }

        ll curr_mx = a[curr[1]];
        ll curr_mn = a[curr.back()];

        ll remain_mx = -inf2;
        if(!pq.empty()){
            remain_mx = pq.top().ff;
        }

        // what is the max val that can be subtracted?
        
        /*

        ll l = 1, r = curr_mn;
        ll mx_sub = -1;

        while(l <= r){
            ll mid = (l+r) >> 1;
            ll new_sum = sum-mid*k;
            if(curr_mx-mid <= new_sum/k and remain_mx <= new_sum/k){
                mx_sub = mid;
                l = mid+1;
            }
            else{
                r = mid-1;
            }
        }

        assert(mx_sub != -1);
    
        */

        ll mx_sub = min(curr_mn,(sum-remain_mx*k)/k);

        curr[0] = mx_sub;
        sum -= mx_sub*k;

        rep1(ind,sz(curr)-1){
            ll i = curr[ind];
            a[i] -= mx_sub;
            pq.push({a[i],i});
        }

        ans.pb(curr);
    }
    
    assert(sum == 0);
    rep1(i,n){
        assert(a[i] == 0);
    }
 
    cout << sz(ans) << endl;
    trav(ar,ans){
        trav(i,ar) cout << i << " ";
        cout << endl;
    }
}

int main()
{
    fastio;

    int t = 1;
    // cin >> t;

    rep1(i, t) {
        solve(i);
    }

    return 0;
}

Compilation message

nicegift.cpp: In function 'void solve(int)':
nicegift.cpp:140:12: warning: unused variable 'curr_mx' [-Wunused-variable]
  140 |         ll curr_mx = a[curr[1]];
      |            ^~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB n=4
2 Correct 1 ms 348 KB n=3
3 Correct 1 ms 348 KB n=3
4 Correct 0 ms 348 KB n=4
5 Correct 0 ms 348 KB n=4
6 Correct 0 ms 348 KB n=2
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB n=4
2 Correct 1 ms 348 KB n=3
3 Correct 1 ms 348 KB n=3
4 Correct 0 ms 348 KB n=4
5 Correct 0 ms 348 KB n=4
6 Correct 0 ms 348 KB n=2
7 Correct 1 ms 348 KB n=5
8 Correct 1 ms 348 KB n=8
9 Correct 1 ms 348 KB n=14
10 Correct 1 ms 348 KB n=11
11 Correct 18 ms 3544 KB n=50000
12 Correct 15 ms 3284 KB n=50000
13 Correct 1 ms 348 KB n=10
14 Correct 1 ms 344 KB n=685
15 Correct 1 ms 348 KB n=623
16 Correct 1 ms 348 KB n=973
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB n=4
2 Correct 1 ms 348 KB n=3
3 Correct 1 ms 348 KB n=3
4 Correct 0 ms 348 KB n=4
5 Correct 0 ms 348 KB n=4
6 Correct 0 ms 348 KB n=2
7 Correct 1 ms 348 KB n=5
8 Correct 1 ms 348 KB n=8
9 Correct 1 ms 348 KB n=14
10 Correct 1 ms 348 KB n=11
11 Correct 18 ms 3544 KB n=50000
12 Correct 15 ms 3284 KB n=50000
13 Correct 1 ms 348 KB n=10
14 Correct 1 ms 344 KB n=685
15 Correct 1 ms 348 KB n=623
16 Correct 1 ms 348 KB n=973
17 Correct 1 ms 348 KB n=989
18 Correct 1 ms 348 KB n=563
19 Correct 1 ms 348 KB n=592
20 Correct 1 ms 348 KB n=938
21 Correct 1 ms 348 KB n=747
22 Correct 1 ms 344 KB n=991
# Verdict Execution time Memory Grader output
1 Correct 382 ms 65712 KB n=1000000
2 Correct 237 ms 41360 KB n=666666
3 Correct 132 ms 22900 KB n=400000
4 Correct 91 ms 15096 KB n=285714
5 Correct 6 ms 1248 KB n=20000
6 Correct 56 ms 8892 KB n=181818
7 Correct 3 ms 860 KB n=10000
8 Correct 3 ms 604 KB n=6666
9 Correct 2 ms 604 KB n=4000
10 Correct 4 ms 604 KB n=2857
11 Correct 1 ms 348 KB n=2000
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB n=4
2 Correct 1 ms 348 KB n=3
3 Correct 1 ms 348 KB n=3
4 Correct 0 ms 348 KB n=4
5 Correct 0 ms 348 KB n=4
6 Correct 0 ms 348 KB n=2
7 Correct 1 ms 348 KB n=5
8 Correct 1 ms 348 KB n=8
9 Correct 1 ms 348 KB n=14
10 Correct 1 ms 348 KB n=11
11 Correct 18 ms 3544 KB n=50000
12 Correct 15 ms 3284 KB n=50000
13 Correct 1 ms 348 KB n=10
14 Correct 1 ms 344 KB n=685
15 Correct 1 ms 348 KB n=623
16 Correct 1 ms 348 KB n=973
17 Correct 1 ms 348 KB n=989
18 Correct 1 ms 348 KB n=563
19 Correct 1 ms 348 KB n=592
20 Correct 1 ms 348 KB n=938
21 Correct 1 ms 348 KB n=747
22 Correct 1 ms 344 KB n=991
23 Correct 382 ms 65712 KB n=1000000
24 Correct 237 ms 41360 KB n=666666
25 Correct 132 ms 22900 KB n=400000
26 Correct 91 ms 15096 KB n=285714
27 Correct 6 ms 1248 KB n=20000
28 Correct 56 ms 8892 KB n=181818
29 Correct 3 ms 860 KB n=10000
30 Correct 3 ms 604 KB n=6666
31 Correct 2 ms 604 KB n=4000
32 Correct 4 ms 604 KB n=2857
33 Correct 1 ms 348 KB n=2000
34 Correct 12 ms 2268 KB n=23514
35 Correct 12 ms 2264 KB n=23514
36 Correct 1 ms 348 KB n=940
37 Correct 1 ms 348 KB n=2
38 Correct 34 ms 5332 KB n=100000
39 Correct 42 ms 5212 KB n=100000
40 Correct 1 ms 344 KB n=10
41 Correct 1 ms 348 KB n=100
42 Correct 2 ms 604 KB n=1000
43 Correct 505 ms 80928 KB n=1000000
44 Correct 897 ms 85172 KB n=1000000
45 Correct 489 ms 56616 KB n=666666
46 Correct 270 ms 32184 KB n=400000
47 Correct 8 ms 1112 KB n=2336
48 Correct 453 ms 52188 KB n=285714
49 Correct 363 ms 43080 KB n=181818
50 Correct 22 ms 2516 KB n=40000
51 Correct 11 ms 1500 KB n=20000
52 Correct 7 ms 984 KB n=10000
53 Correct 33 ms 4432 KB n=6666
54 Correct 4 ms 600 KB n=4000
55 Correct 132 ms 16092 KB n=2857
56 Correct 3 ms 604 KB n=2000