Submission #911815

# Submission time Handle Problem Language Result Execution time Memory
911815 2024-01-19T05:30:06 Z GrindMachine Hard route (IZhO17_road) C++17
52 / 100
92 ms 46924 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*



*/

const int MOD = 1e9 + 7;
const int N = 5e3 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

template<typename T>
struct two_max{
    pair<T,T> a;
    
    two_max(){
        a = {{-inf2,-inf2},{-inf2,-inf2}};
    }

    void insert(T p){
        if(p > a.ff){
            a.ss = a.ff;
            a.ff = p;
        }
        else if(p > a.ss){
            a.ss = p;
        }
    }

    T first_max(){
        return a.ff;
    }

    T second_max(){
        return a.ss;
    }
};

vector<ll> adj[N];
vector<ll> depth(N), deepest(N);

void dfs1(ll u, ll p){
    trav(v,adj[u]){
        if(v == p) conts;
        depth[v] = depth[u]+1;
        dfs1(v,u);
        amax(deepest[u],deepest[v]+1);
    }
}

vector<ll> deepest_outside(N,-inf2);
vector<two_max<pll>> deepest_par(N);

void dfs2(ll u, ll p){
    vector<ll> children;
    children.pb(0);
    trav(v,adj[u]){
        if(v == p) conts;
        children.pb(v);
    }

    ll siz = sz(children)-1;
    vector<two_max<pll>> pmx(siz+5), smx(siz+5);

    rep1(i,siz){
        ll v = children[i];
        pmx[i] = pmx[i-1];
        pmx[i].insert({deepest[v]+1,v});
    }

    rev(i,siz,1){
        ll v = children[i];
        smx[i] = smx[i+1];
        smx[i].insert({deepest[v]+1,v});
    }

    rep1(i,siz){
        two_max tm = pmx[i-1];
        tm.insert(smx[i+1].a.ff);
        tm.insert(smx[i+1].a.ss);

        ll v = children[i];
        deepest_par[v] = tm;
        deepest_outside[v] = max(deepest_outside[u]+1,tm.first_max().ff+1);

        dfs2(v,u);
    }
}

vector<pll> leaves[N];
ll mx_val = -inf2, mx_cnt = 0;

void dfs3(ll u, ll p){
    if(sz(adj[u]) == 1){
        leaves[u].pb({u,0});
        return;
    }

    vector<ll> children;
    trav(v,adj[u]){
        if(v == p) conts;
        dfs3(v,u);
        children.pb(v);
    }

    ll siz = sz(children);

    rep(i,siz){
        for(int j = i+1; j < siz; ++j){
            ll v1 = children[i], v2 = children[j];
            for(auto [x,mx_x] : leaves[v1]){
                for(auto [y,mx_y] : leaves[v2]){
                    ll len = depth[x]+depth[y]-2*depth[u];
                    ll mx = max(mx_x,mx_y);

                    amax(mx,deepest_outside[u]);
                    if(deepest_par[v1].first_max().ss != v2){
                        amax(mx,deepest_par[v1].first_max().ff);
                    }
                    else{
                        assert(deepest_par[v1].second_max().ss != v2);
                        amax(mx,deepest_par[v1].second_max().ff);
                    }

                    // debug(x);
                    // debug(y);
                    // debug(len);
                    // debug(mx);
                    // debug(deepest_par[x].first_max());
                    // cout << endl;

                    ll val = len*mx;
                    if(val > mx_val){
                        mx_val = val;
                        mx_cnt = 1;
                    }
                    else if(val == mx_val){
                        mx_cnt++;
                    }
                }
            }
        }
    }

    trav(v,children){
        for(auto [x,mx_x] : leaves[v]){
            leaves[u].pb({x,max(mx_x,deepest_par[v].first_max().ff)});
        }

        leaves[v].clear();
    }
}

void solve(int test_case)
{
    ll n; cin >> n;
    rep1(i,n-1){
        ll u,v; cin >> u >> v;
        adj[u].pb(v), adj[v].pb(u);
    }

    if(n == 2){
        cout << 0 << " " << 1 << endl;
        return;
    }

    ll root = -1;
    rep1(i,n){
        if(sz(adj[i]) >= 2){
            root = i;
            break;
        }
    }

    assert(root != -1);

    dfs1(root,-1);
    dfs2(root,-1);

    // rep1(i,n){
    //     debug(i);
    //     debug(deepest[i]);
    //     debug(deepest_outside[i]);
    //     debug(deepest_par[i]);
    //     cout << endl;
    // }

    dfs3(root,-1);

    cout << mx_val << " " << mx_cnt << endl;
}

int main()
{
    fastio;

    int t = 1;
    // cin >> t;

    rep1(i, t) {
        solve(i);
    }

    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 860 KB Output is correct
2 Correct 1 ms 860 KB Output is correct
3 Correct 1 ms 860 KB Output is correct
4 Correct 1 ms 860 KB Output is correct
5 Correct 1 ms 860 KB Output is correct
6 Correct 1 ms 860 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 1 ms 1112 KB Output is correct
9 Correct 1 ms 772 KB Output is correct
10 Correct 1 ms 860 KB Output is correct
11 Correct 1 ms 860 KB Output is correct
12 Correct 1 ms 856 KB Output is correct
13 Correct 1 ms 856 KB Output is correct
14 Correct 1 ms 860 KB Output is correct
15 Correct 1 ms 860 KB Output is correct
16 Correct 1 ms 860 KB Output is correct
17 Correct 1 ms 856 KB Output is correct
18 Correct 1 ms 860 KB Output is correct
19 Correct 1 ms 860 KB Output is correct
20 Correct 1 ms 860 KB Output is correct
21 Correct 1 ms 924 KB Output is correct
22 Correct 1 ms 860 KB Output is correct
23 Correct 1 ms 856 KB Output is correct
24 Correct 1 ms 856 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 860 KB Output is correct
2 Correct 1 ms 860 KB Output is correct
3 Correct 1 ms 860 KB Output is correct
4 Correct 1 ms 860 KB Output is correct
5 Correct 1 ms 860 KB Output is correct
6 Correct 1 ms 860 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 1 ms 1112 KB Output is correct
9 Correct 1 ms 772 KB Output is correct
10 Correct 1 ms 860 KB Output is correct
11 Correct 1 ms 860 KB Output is correct
12 Correct 1 ms 856 KB Output is correct
13 Correct 1 ms 856 KB Output is correct
14 Correct 1 ms 860 KB Output is correct
15 Correct 1 ms 860 KB Output is correct
16 Correct 1 ms 860 KB Output is correct
17 Correct 1 ms 856 KB Output is correct
18 Correct 1 ms 860 KB Output is correct
19 Correct 1 ms 860 KB Output is correct
20 Correct 1 ms 860 KB Output is correct
21 Correct 1 ms 924 KB Output is correct
22 Correct 1 ms 860 KB Output is correct
23 Correct 1 ms 856 KB Output is correct
24 Correct 1 ms 856 KB Output is correct
25 Correct 36 ms 33616 KB Output is correct
26 Correct 12 ms 10076 KB Output is correct
27 Correct 33 ms 31572 KB Output is correct
28 Correct 6 ms 2648 KB Output is correct
29 Correct 45 ms 38960 KB Output is correct
30 Correct 54 ms 46924 KB Output is correct
31 Correct 54 ms 46160 KB Output is correct
32 Correct 41 ms 34924 KB Output is correct
33 Correct 4 ms 2392 KB Output is correct
34 Correct 4 ms 2648 KB Output is correct
35 Correct 4 ms 2652 KB Output is correct
36 Correct 4 ms 2388 KB Output is correct
37 Correct 7 ms 3164 KB Output is correct
38 Correct 5 ms 4188 KB Output is correct
39 Correct 5 ms 2140 KB Output is correct
40 Correct 4 ms 1628 KB Output is correct
41 Correct 4 ms 1372 KB Output is correct
42 Correct 3 ms 1372 KB Output is correct
43 Correct 4 ms 1372 KB Output is correct
44 Correct 3 ms 1368 KB Output is correct
45 Correct 4 ms 1372 KB Output is correct
46 Correct 6 ms 1116 KB Output is correct
47 Correct 23 ms 1384 KB Output is correct
48 Correct 92 ms 1628 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 860 KB Output is correct
2 Correct 1 ms 860 KB Output is correct
3 Correct 1 ms 860 KB Output is correct
4 Correct 1 ms 860 KB Output is correct
5 Correct 1 ms 860 KB Output is correct
6 Correct 1 ms 860 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 1 ms 1112 KB Output is correct
9 Correct 1 ms 772 KB Output is correct
10 Correct 1 ms 860 KB Output is correct
11 Correct 1 ms 860 KB Output is correct
12 Correct 1 ms 856 KB Output is correct
13 Correct 1 ms 856 KB Output is correct
14 Correct 1 ms 860 KB Output is correct
15 Correct 1 ms 860 KB Output is correct
16 Correct 1 ms 860 KB Output is correct
17 Correct 1 ms 856 KB Output is correct
18 Correct 1 ms 860 KB Output is correct
19 Correct 1 ms 860 KB Output is correct
20 Correct 1 ms 860 KB Output is correct
21 Correct 1 ms 924 KB Output is correct
22 Correct 1 ms 860 KB Output is correct
23 Correct 1 ms 856 KB Output is correct
24 Correct 1 ms 856 KB Output is correct
25 Correct 36 ms 33616 KB Output is correct
26 Correct 12 ms 10076 KB Output is correct
27 Correct 33 ms 31572 KB Output is correct
28 Correct 6 ms 2648 KB Output is correct
29 Correct 45 ms 38960 KB Output is correct
30 Correct 54 ms 46924 KB Output is correct
31 Correct 54 ms 46160 KB Output is correct
32 Correct 41 ms 34924 KB Output is correct
33 Correct 4 ms 2392 KB Output is correct
34 Correct 4 ms 2648 KB Output is correct
35 Correct 4 ms 2652 KB Output is correct
36 Correct 4 ms 2388 KB Output is correct
37 Correct 7 ms 3164 KB Output is correct
38 Correct 5 ms 4188 KB Output is correct
39 Correct 5 ms 2140 KB Output is correct
40 Correct 4 ms 1628 KB Output is correct
41 Correct 4 ms 1372 KB Output is correct
42 Correct 3 ms 1372 KB Output is correct
43 Correct 4 ms 1372 KB Output is correct
44 Correct 3 ms 1368 KB Output is correct
45 Correct 4 ms 1372 KB Output is correct
46 Correct 6 ms 1116 KB Output is correct
47 Correct 23 ms 1384 KB Output is correct
48 Correct 92 ms 1628 KB Output is correct
49 Runtime error 2 ms 1628 KB Execution killed with signal 11
50 Halted 0 ms 0 KB -