제출 #881438

#제출 시각아이디문제언어결과실행 시간메모리
881438LibSplit the Attractions (IOI19_split)C++14
0 / 100
82 ms44868 KiB
#include <bits/stdc++.h> #include "split.h" using namespace std; vector <vector <int> > adj; vector <vector <int> > cadj; vector <vector <int> > tadj; vector <int> TVector; int check[300003]; int SubtreeSize[300003]; int Parent[300003]; int n; int N; //Parent on each iteration of DFS deque <int> clist; vector <int> ans; int csize; int cback; vector <int> Group1,Group2; int GroupAID,GroupBID,GroupASize,GroupBSize; int cur; int Subtree1,Subtree2; void ShittyDFS(int i){ cadj.clear(); adj=tadj; for(int k=0;k<N;k++){ SubtreeSize[k]=0; Parent[k]=0; cadj.push_back(TVector); } Parent[i]=-1; //wacky dfs (and calculate size of subtrees as well //have to opt into a less retarded DFS to see whether things will work out or not. //it does. good cur=1; clist.push_back(i); check[i]=1; while(!clist.empty()){ if(!SubtreeSize[clist.back()]){ SubtreeSize[clist.back()]=cur; } while(!adj[clist.back()].empty()&&check[adj[clist.back()].back()]){ adj[clist.back()].pop_back(); } if(!adj[clist.back()].empty()){ check[adj[clist.back()].back()]=1; Parent[adj[clist.back()].back()]=clist.back(); cback=clist.back(); cadj[clist.back()].push_back(adj[clist.back()].back()); cadj[adj[clist.back()].back()].push_back(clist.back()); clist.push_back(adj[cback].back()); cur++; }else{ SubtreeSize[clist.back()]=cur-SubtreeSize[clist.back()]+1; //while(!clist.empty()&&adj[clist.back()].empty()){ clist.pop_back(); //} } } //retarded fucker deleted everything outta the graph after 1st instance of DFS. Has to DFS N times. Doesn't understand why the DFS refuses to work correctly //It is, indeed, very highly recommended to NOT use IOI tasks to learn the basics :wheeze: :holyfuck: } vector <int> find_split(int n, int a, int b, int c, vector <int> p, vector <int> q){ //Only cares about the 2 smaller group: Assuming that we DID find a solution where the largest group is connected, just swap some of those points for the unused group. //As this is the largest group, swapping some minor connected parts for the unused group is still valid, and always doable => only care about 2 smallest group only //very intuitive tbh N=n; vector <pair <int,int> > order; order.push_back({a,1}); order.push_back({b,2}); order.push_back({c,3}); sort(order.begin(),order.end()); GroupAID=order[0].second; GroupASize=order[0].first; GroupBID=order[1].second; GroupBSize=order[1].first; for(int i=0;i<N;i++){ adj.push_back(TVector); } //Build the graph. Who can't understand this? for(int i=0;i<p.size();i++){ adj[p[i]].push_back(q[i]); adj[q[i]].push_back(p[i]); } //Maybe random shuffle would work???? for(int i=0;i<n;i++){ // random_shuffle(adj[i].begin(),adj[i].end()); } tadj=adj; /* Let's just call the smallest group gropu A, and second smallest group group B. Let's kinda start working with the tree subtask first. When we split the tree into 2 part, we are essentially dedicating an entire subtree for group A and the rest of the tree for group B, or vice versa. We will now do the following:\ - Try all vertices on the tree. For each verticies, check through all of its subtreees. - If we can dedicate an entire subtree to group A and the rest to group B (or vice versa), this split will work instantly. We are basically cutting our original tree into 2 parts. - If after checking all subtrees of all vertices and we still haven't found a solution, there is no solution. (Why this kind of check works: We are trying everything, so no method of "splitting OG tree into 2 parts" is ignored...Let's be honest, I think that 64pts for this is trivial and doesn't require much thought at all. The wacky funny parts comes from the final subtask, which I haven't solved yet. Complexity: We take O(N) to DFS and calculate size of subtrees of all nodes. For each of the N vertex, we check through all of their adjacient vertices. Basically, we are checking 3N times (like, come on, in a tree of N nodes, there are 2N-2 pairs of adjacient points. There is literally nothing to explain here). Basically, for each DFS tree, we take roughly O(N) to check whether there exists a valid split or not. For the general graph (but small) case: Just create N DFS trees and bruteforce them, lol. Nothing to talk about just yet */ for(int i=0;i<N;i++){ //Tested locally, seems correct enough. First time implementing DFS. Moving on. //On another hand, you know what? Chugging DFS into a function now. brb //Done ShittyDFS(i); //Try the split with every single vertex on the tree. for(int k=0;k<N;k++){ check[k]=0; } //Oh, one major note: The things below will have to be done on the DFS tree created on the previous step. Instead of BFS-ing on the original graph //(which is the adj vector of edges), I will BFS on cadj (the graph that is the DFS tree created in this iteration) for(int k=0;k<N;k++){ for(int l=0;l<cadj[k].size();l++){ Subtree1=SubtreeSize[cadj[k][l]]; if(cadj[k][l]==Parent[k]){ Subtree1=n-SubtreeSize[k]; } Subtree2=n-Subtree1; if(Subtree1>=GroupASize){ //Found the answer so just BFS to mark the points check[cadj[k][l]]=GroupAID; check[k]=GroupBID; clist.clear(); clist.push_back(cadj[k][l]); csize=1; while(csize<GroupASize){ for(int d=0;d<cadj[clist.front()].size();d++){ if(!check[cadj[clist.front()][d]]){ check[cadj[clist.front()][d]]=GroupAID; clist.push_back(cadj[clist.front()][d]); csize++; if(csize==GroupASize){ break; } } if(csize==GroupASize){ break; } } clist.pop_front(); } clist.clear(); clist.push_back(k); csize=1; while(csize<GroupBSize){ for(int d=0;d<cadj[clist.front()].size();d++){ if(!check[cadj[clist.front()][d]]){ check[cadj[clist.front()][d]]=GroupBID; clist.push_back(cadj[clist.front()][d]); csize++; if(csize==GroupBSize){ break; } } if(csize==GroupBSize){ break; } } clist.pop_front(); } ans.clear(); for(int d=0;d<N;d++){ if(check[d]==0){ check[d]=6-GroupAID-GroupBID; } ans.push_back(check[d]); } return ans; } //As it turns out, considering the reverse situation isn't needed. ok. //Still can't figure out wtf is stopping this from passing subtask 4 for the life of me //Or maybe it is indeed needed? } } if(p.size()==N-1){ //If it is a tree, the DFS tree is always the same, so 1 DFS is all it needs. break; } } ans.clear(); for(int i=0;i<N;i++){ ans.push_back(0); } return ans; }

컴파일 시 표준 에러 (stderr) 메시지

split.cpp: In function 'std::vector<int> find_split(int, int, int, int, std::vector<int>, std::vector<int>)':
split.cpp:80:15: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   80 |  for(int i=0;i<p.size();i++){
      |              ~^~~~~~~~~
split.cpp:116:17: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  116 |    for(int l=0;l<cadj[k].size();l++){
      |                ~^~~~~~~~~~~~~~~
split.cpp:130:20: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  130 |       for(int d=0;d<cadj[clist.front()].size();d++){
      |                   ~^~~~~~~~~~~~~~~~~~~~~~~~~~~
split.cpp:149:20: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  149 |       for(int d=0;d<cadj[clist.front()].size();d++){
      |                   ~^~~~~~~~~~~~~~~~~~~~~~~~~~~
split.cpp:179:14: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
  179 |   if(p.size()==N-1){
      |      ~~~~~~~~^~~~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...