답안 #876513

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
876513 2023-11-21T21:10:39 Z danikoynov Fish 2 (JOI22_fish2) C++14
48 / 100
4000 ms 86632 KB
#include<bits/stdc++.h>
#define endl '\n'

using namespace std;

typedef long long ll;

const int maxn = 1e5 + 10;


int n, q;
ll a[maxn], pref[maxn];
void input()
{
    cin >> n;
    for (int i = 1; i <= n; i ++)
        cin >> a[i];
    cin >> q;
    a[0] = 1e9 + 10;
    a[n + 1] = 1e9 + 10;

}

struct interval
{
    int left, right, pivot;

    interval(int _left = 0, int _right = 0, int _pivot = 0)
    {
        left = _left;
        right = _right;
        pivot = _pivot;
    }
    bool operator < (const interval &it) const
    {
        if (left != it.left)
            return left < it.left;
        if (right != it.right)
            return right < it.right;
        ///assert(pivot != it.pivot);
        return pivot < it.pivot;
    }
};

set < interval > ranges;
vector < interval > act[4 * maxn];

void add_range(int root, int left, int right, int qleft, int qright, interval cur)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        //cout << "ROOT " << root << endl;
        act[root].push_back(cur);

        return;
    }

    int mid = (left + right) / 2;
    add_range(root * 2, left, mid, qleft, qright, cur);
    add_range(root * 2 + 1, mid + 1, right, qleft, qright, cur);
}

void rem_range(int root, int left, int right, int qleft, int qright)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        act[root].pop_back();
        return;
    }

    int mid = (left + right) / 2;
    rem_range(root * 2, left, mid, qleft, qright);
    rem_range(root * 2 + 1, mid + 1, right, qleft, qright);
}

bool cmp_interval(const interval &it1, const interval &it2)
{
    if ((it1.right - it1.left) != (it2.right - it2.left))
        return (it1.right - it1.left) < (it2.right - it2.left);
    if (it1.left != it2.left)
        return it1.left < it2.left;

    /**if (it1.pivot == it2.pivot)
    {
        cout << "here" << endl;
        cout << it1.left << " " << it1.right << " " << it1.pivot << endl;
        cout << it2.left << " " << it2.right << " " << it2.pivot << endl;
        cout << "FUCK" << endl;
        exit(0);
    }*/
    return (it1.pivot < it2.pivot);
}

set < interval > pact[maxn];
void get_ranges()
{
    ranges.clear();
    stack < int > st;
    st.push(0);
    vector < interval > vec;
    for (int i = 1; i <= n; i ++)
    {
        while(!st.empty() && a[st.top()] < a[i])
            st.pop();

        ranges.insert(interval(st.top(), i, i));
        vec.push_back(interval(st.top(), i, i));


        st.push(i);
    }

    while(!st.empty())
        st.pop();
    st.push(n + 1);
    for (int i = n; i > 0; i --)
    {
        while(!st.empty() && a[st.top()] < a[i])
            st.pop();

        ranges.insert(interval(i, st.top(), i));
        vec.push_back(interval(i, st.top(), i));

        st.push(i);
    }

    sort(vec.begin(), vec.end(), cmp_interval);
    ///reverse(vec.begin(), vec.end());
    for (interval cur : vec)
    {
        //cout << "added " << cur.left << " " << cur.right << endl;
        pact[cur.left].insert(cur);
        pact[cur.right].insert(cur);
        add_range(1, 0, n + 1, cur.left + 1, cur.right - 1, cur);
    }
}

int b[maxn];

struct node
{
    int cnt, mx;

    node(int _cnt = 0, int _mx = 1e9 + 10)
    {
        cnt = _cnt;
        mx = _mx;
    }
};

node tree[4 * maxn];
int lazy[4 * maxn];

node merge_node(node lf, node rf)
{
    if (lf.cnt == -1 || rf.mx < lf.mx)
        return rf;
    if (rf.cnt == -1 || lf.mx < rf.mx)
        return lf;

    return node(lf.cnt + rf.cnt, lf.mx);
}

void push_lazy(int root, int left, int right)
{
    tree[root].mx += lazy[root];
    if (left != right)
    {
        lazy[root * 2] += lazy[root];
        lazy[root * 2 + 1] += lazy[root];
    }
    lazy[root] = 0;
}

void build_tree(int root, int left, int right)
{
    lazy[root] = 0;
    if (left == right)
    {
        tree[root].mx = b[left];
        tree[root].cnt = 1;
        return;
    }

    int mid = (left + right) / 2;
    build_tree(root * 2, left, mid);
    build_tree(root * 2 + 1, mid + 1, right);

    tree[root] = merge_node(tree[root * 2], tree[root * 2 + 1]);
}

void update_range(int root, int left, int right, int qleft, int qright, int val)
{
    push_lazy(root, left, right);
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        lazy[root] = val;
        push_lazy(root, left, right);
        return;
    }

    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, val);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, val);

    tree[root] = merge_node(tree[root * 2], tree[root * 2 + 1]);
}
node query(int root, int left, int right, int qleft, int qright)
{
    push_lazy(root, left, right);
    if (left > qright || right < qleft)
        return node(-1, 1e9 + 10);

    if (left >= qleft && right <= qright)
        return tree[root];

    int mid = (left + right) / 2;

    return merge_node(query(root * 2, left, mid, qleft, qright),
            query(root * 2 + 1, mid + 1, right, qleft, qright));
}

ll values[maxn];

struct segment_tree
{
    ll tree[4 * maxn], lazy[4 * maxn];


    void build_tree(int root, int left, int right)
    {
        lazy[root] = 0;
        if (left == right)
        {
            tree[root] = values[left];
            return;
        }

        int mid = (left + right) / 2;
        build_tree(root * 2, left, mid);
        build_tree(root * 2 + 1, mid + 1, right);

        tree[root] = max(tree[root * 2], tree[root * 2 + 1]);
    }

    void push_lazy(int root, int left, int right)
    {
        tree[root] += lazy[root];
        if (left != right)
        {
            lazy[root * 2] += lazy[root];
            lazy[root * 2 + 1] += lazy[root];
        }

        lazy[root] = 0;
    }

    void update_range(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft)
            return;

        if (left >= qleft && right <= qright)
        {
            lazy[root] += val;
            push_lazy(root, left, right);
            return;
        }

        int mid = (left + right) / 2;
        update_range(root * 2, left, mid, qleft, qright, val);
        update_range(root * 2 + 1, mid + 1, right, qleft, qright, val);

        tree[root] = max(tree[root * 2], tree[root * 2 + 1]);
    }

    ll walk_left(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft || tree[root] <= val)
            return n + 1;

        if (left == right)
            return left;

        int mid = (left + right) / 2;
        if (left >= qleft && right <= qright)
        {
            push_lazy(root * 2, left, mid);
            push_lazy(root * 2 + 1, mid + 1, right);
            if (tree[root * 2] > val)
                return walk_left(root * 2, left, mid, qleft, qright, val);
            return walk_left(root * 2 + 1, mid + 1, right, qleft, qright, val);
        }

        return min(walk_left(root * 2, left, mid, qleft, qright, val),
                walk_left(root * 2 + 1, mid + 1, right, qleft, qright, val));
    }

    ll walk_right(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft || tree[root] <= val)
            return 0;

        if (left == right)
            return left;

        int mid = (left + right) / 2;
        if (left >= qleft && right <= qright)
        {
            push_lazy(root * 2, left, mid);
            push_lazy(root * 2 + 1, mid + 1, right);
            if (tree[root * 2 + 1] > val)
                    return walk_right(root * 2 + 1, mid + 1, right, qleft, qright, val);
            return walk_right(root * 2, left, mid, qleft, qright, val);
        }

        return max(walk_right(root * 2, left, mid, qleft, qright, val),
                walk_right(root * 2 + 1, mid + 1, right, qleft, qright, val));
    }
};

segment_tree left_tree, right_tree;

ll fen[maxn];

void update_fen(int pos, ll val)
{
    for (int i = pos; i <= n; i += (i & -i))
        fen[i] += val;
}

ll query_fen(int pos)
{
    ll s = 0;
    for (int i = pos; i > 0; i -= (i & -i))
        s += fen[i];
    return s;
}

ll range_sum(int left, int right)
{
    return query_fen(right) - query_fen(left - 1);
}

void solve_query(int left, int right)
{
    int lb = left_tree.walk_right(1, 1, n, left, right, - query_fen(left - 1));
    int rb = right_tree.walk_left(1, 1, n, left, right, query_fen(right));


    cout << query(1, 1, n, lb, rb).cnt << endl;
}

void restructure()
{
    ///cout << "-------------" << endl;

    build_tree(1, 1, n);
    for (interval cur : ranges)
    {
        ll mx = min(a[cur.left], a[cur.right]);
        if (range_sum(cur.left + 1, cur.right - 1) < mx)
        {
            update_range(1, 1, n, cur.left + 1, cur.right - 1, 1);
            ///cout << cur.left << " " << cur.right << endl;
            //for (int i = cur.left + 1; i < cur.right; i ++)
              //  b[i] ++;
        }
    }
}


    vector < interval > to_add;
        vector < pair < int, int > > to_fix;
void fix_point(int pos)
{

    to_fix.clear();
    int root = 1, left = 0, right = n + 1;
    vector < interval > to_rem;
    while(true)
    {
        for (interval cur : act[root])
        {
            to_rem.push_back(cur);
            if (cur.pivot == cur.left)
                to_fix.push_back({cur.pivot, 0});
            else
                to_fix.push_back({cur.pivot, 1});
        }
        if (left == right)
            break;
        int mid = (left + right) / 2;
        if (pos <= mid)
            right = mid, root *= 2;
        else
            left = mid + 1, root = (root * 2) + 1;
    }
    for (interval cur : pact[pos])
    {
        to_rem.push_back(cur);
        if (cur.pivot == cur.left)
            to_fix.push_back({cur.pivot, 0});
        else
            to_fix.push_back({cur.pivot, 1});
    }
    sort(to_rem.begin(), to_rem.end(), cmp_interval);
    reverse(to_rem.begin(), to_rem.end());
    for (interval cur : to_rem)
    {
        //cout << "remove " << cur.left << " " << cur.right << endl;
       // if (ranges.find(cur) == ranges.end())
          //  cout << "yep" << endl;
        pact[cur.left].erase(cur);
        pact[cur.right].erase(cur);
        if (range_sum(cur.left + 1, cur.right - 1) < min(a[cur.left], a[cur.right]))
            update_range(1, 1, n, cur.left + 1, cur.right - 1, -1);
        rem_range(1, 0, n + 1, cur.left + 1, cur.right -1);
    }





}

void addition()
{

    to_add.clear();
    for (pair < int, int > cur : to_fix)
    {
        if (cur.second == 0)
        {
            int df = cur.first + 1;
            while(a[df] < a[cur.first])
                df ++;
            to_add.push_back(interval(cur.first, df, cur.first));
        }
        else
        {
            int df = cur.first - 1;
            while(a[df] < a[cur.first])
                df --;
            to_add.push_back(interval(df, cur.first, cur.first));
        }
    }
    sort(to_add.begin(), to_add.end(), cmp_interval);
    ///reverse(to_add.begin(), to_add.end());
    for (interval cur : to_add)
    {
        pact[cur.left].insert(cur);
        pact[cur.right].insert(cur);
        if (range_sum(cur.left + 1, cur.right - 1) < min(a[cur.left], a[cur.right]))
            update_range(1, 1, n, cur.left + 1, cur.right - 1, 1);
        ///cout << "added " << cur.left << " : " << cur.right << endl;
        add_range(1, 0, n + 1, cur.left + 1, cur.right - 1, cur);
    }
}
void simulate()
{

    for (int i = 1; i <= n; i ++)
        update_fen(i, a[i]);
    get_ranges();

    restructure();

    for (int i = 1; i <= n; i ++)
    {
        values[i] = a[i] - query_fen(i - 1);
    }
    left_tree.build_tree(1, 1, n);

    for (int i = 1; i <= n; i ++)
    {
        values[i] = a[i] + query_fen(i);
    }
    right_tree.build_tree(1, 1, n);
    for (int i = 1; i <= q; i ++)
    {
        int type;
        cin >> type;
        if (type == 1)
        {
            int idx;
            ll x;
            cin >> idx >> x;
            fix_point(idx);
            update_fen(idx, x - a[idx]);
            left_tree.update_range(1, 1, n, idx + 1, n, - (x - a[idx]));
            left_tree.update_range(1, 1, n, idx, idx, (x - a[idx]));
            right_tree.update_range(1, 1, n, idx, n, (x - a[idx]));
            right_tree.update_range(1, 1, n, idx, idx, (x - a[idx]));
            a[idx] = x;
            addition();
        }
        else
        {
            int l, r;
            cin >> l >> r;
            solve_query(l, r);
        }
    }
}
void solve()
{
    input();
    simulate();
}

void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    ///freopen("test.txt", "r", stdin);
    speed();
    solve();
    return 0;
}
/*
12
32 32 4 1 1 1 1 4 4 16 32 128
1
2 8 10


*/
# 결과 실행 시간 메모리 Grader output
1 Correct 6 ms 29276 KB Output is correct
2 Correct 5 ms 29276 KB Output is correct
3 Correct 6 ms 29276 KB Output is correct
4 Correct 6 ms 29784 KB Output is correct
5 Correct 13 ms 29784 KB Output is correct
6 Correct 8 ms 29532 KB Output is correct
7 Correct 12 ms 29732 KB Output is correct
8 Correct 8 ms 29628 KB Output is correct
9 Correct 8 ms 29532 KB Output is correct
10 Correct 9 ms 29532 KB Output is correct
11 Correct 7 ms 29480 KB Output is correct
12 Correct 10 ms 29528 KB Output is correct
13 Correct 7 ms 29532 KB Output is correct
14 Correct 8 ms 29732 KB Output is correct
15 Correct 9 ms 29532 KB Output is correct
16 Correct 7 ms 29532 KB Output is correct
17 Correct 11 ms 29716 KB Output is correct
18 Correct 7 ms 29532 KB Output is correct
19 Correct 8 ms 29700 KB Output is correct
20 Correct 7 ms 29532 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 29276 KB Output is correct
2 Correct 212 ms 79252 KB Output is correct
3 Correct 216 ms 78280 KB Output is correct
4 Correct 221 ms 79404 KB Output is correct
5 Correct 201 ms 78340 KB Output is correct
6 Correct 194 ms 76772 KB Output is correct
7 Correct 195 ms 75780 KB Output is correct
8 Correct 190 ms 76744 KB Output is correct
9 Correct 231 ms 75808 KB Output is correct
10 Correct 200 ms 79056 KB Output is correct
11 Correct 199 ms 75972 KB Output is correct
12 Correct 185 ms 76088 KB Output is correct
13 Correct 185 ms 76008 KB Output is correct
14 Correct 177 ms 75972 KB Output is correct
15 Correct 188 ms 75968 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 6 ms 29276 KB Output is correct
2 Correct 5 ms 29276 KB Output is correct
3 Correct 6 ms 29276 KB Output is correct
4 Correct 6 ms 29784 KB Output is correct
5 Correct 13 ms 29784 KB Output is correct
6 Correct 8 ms 29532 KB Output is correct
7 Correct 12 ms 29732 KB Output is correct
8 Correct 8 ms 29628 KB Output is correct
9 Correct 8 ms 29532 KB Output is correct
10 Correct 9 ms 29532 KB Output is correct
11 Correct 7 ms 29480 KB Output is correct
12 Correct 10 ms 29528 KB Output is correct
13 Correct 7 ms 29532 KB Output is correct
14 Correct 8 ms 29732 KB Output is correct
15 Correct 9 ms 29532 KB Output is correct
16 Correct 7 ms 29532 KB Output is correct
17 Correct 11 ms 29716 KB Output is correct
18 Correct 7 ms 29532 KB Output is correct
19 Correct 8 ms 29700 KB Output is correct
20 Correct 7 ms 29532 KB Output is correct
21 Correct 5 ms 29276 KB Output is correct
22 Correct 212 ms 79252 KB Output is correct
23 Correct 216 ms 78280 KB Output is correct
24 Correct 221 ms 79404 KB Output is correct
25 Correct 201 ms 78340 KB Output is correct
26 Correct 194 ms 76772 KB Output is correct
27 Correct 195 ms 75780 KB Output is correct
28 Correct 190 ms 76744 KB Output is correct
29 Correct 231 ms 75808 KB Output is correct
30 Correct 200 ms 79056 KB Output is correct
31 Correct 199 ms 75972 KB Output is correct
32 Correct 185 ms 76088 KB Output is correct
33 Correct 185 ms 76008 KB Output is correct
34 Correct 177 ms 75972 KB Output is correct
35 Correct 188 ms 75968 KB Output is correct
36 Correct 266 ms 79440 KB Output is correct
37 Correct 224 ms 78300 KB Output is correct
38 Correct 217 ms 78176 KB Output is correct
39 Correct 286 ms 79516 KB Output is correct
40 Correct 206 ms 78148 KB Output is correct
41 Correct 220 ms 76836 KB Output is correct
42 Correct 209 ms 76740 KB Output is correct
43 Correct 222 ms 75880 KB Output is correct
44 Correct 202 ms 75692 KB Output is correct
45 Correct 256 ms 78792 KB Output is correct
46 Correct 212 ms 78912 KB Output is correct
47 Correct 182 ms 76224 KB Output is correct
48 Correct 284 ms 76228 KB Output is correct
49 Correct 200 ms 75968 KB Output is correct
50 Correct 187 ms 75892 KB Output is correct
51 Correct 197 ms 76072 KB Output is correct
52 Correct 182 ms 75972 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 29276 KB Output is correct
2 Correct 212 ms 79252 KB Output is correct
3 Correct 216 ms 78280 KB Output is correct
4 Correct 221 ms 79404 KB Output is correct
5 Correct 201 ms 78340 KB Output is correct
6 Correct 194 ms 76772 KB Output is correct
7 Correct 195 ms 75780 KB Output is correct
8 Correct 190 ms 76744 KB Output is correct
9 Correct 231 ms 75808 KB Output is correct
10 Correct 200 ms 79056 KB Output is correct
11 Correct 199 ms 75972 KB Output is correct
12 Correct 185 ms 76088 KB Output is correct
13 Correct 185 ms 76008 KB Output is correct
14 Correct 177 ms 75972 KB Output is correct
15 Correct 188 ms 75968 KB Output is correct
16 Correct 6 ms 29532 KB Output is correct
17 Correct 388 ms 78444 KB Output is correct
18 Correct 363 ms 79808 KB Output is correct
19 Correct 357 ms 78536 KB Output is correct
20 Correct 362 ms 78532 KB Output is correct
21 Correct 358 ms 78540 KB Output is correct
22 Correct 355 ms 79656 KB Output is correct
23 Correct 352 ms 78248 KB Output is correct
24 Correct 383 ms 78796 KB Output is correct
25 Correct 366 ms 78504 KB Output is correct
26 Correct 384 ms 78544 KB Output is correct
27 Correct 323 ms 77160 KB Output is correct
28 Correct 349 ms 77420 KB Output is correct
29 Correct 329 ms 77252 KB Output is correct
30 Correct 363 ms 75924 KB Output is correct
31 Correct 341 ms 75920 KB Output is correct
32 Correct 373 ms 76332 KB Output is correct
33 Correct 371 ms 79564 KB Output is correct
34 Correct 367 ms 76224 KB Output is correct
35 Correct 342 ms 75844 KB Output is correct
36 Correct 374 ms 79340 KB Output is correct
37 Correct 328 ms 76224 KB Output is correct
38 Correct 315 ms 76324 KB Output is correct
39 Correct 327 ms 76484 KB Output is correct
40 Correct 319 ms 76616 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 5 ms 29276 KB Output is correct
2 Correct 212 ms 79252 KB Output is correct
3 Correct 216 ms 78280 KB Output is correct
4 Correct 221 ms 79404 KB Output is correct
5 Correct 201 ms 78340 KB Output is correct
6 Correct 194 ms 76772 KB Output is correct
7 Correct 195 ms 75780 KB Output is correct
8 Correct 190 ms 76744 KB Output is correct
9 Correct 231 ms 75808 KB Output is correct
10 Correct 200 ms 79056 KB Output is correct
11 Correct 199 ms 75972 KB Output is correct
12 Correct 185 ms 76088 KB Output is correct
13 Correct 185 ms 76008 KB Output is correct
14 Correct 177 ms 75972 KB Output is correct
15 Correct 188 ms 75968 KB Output is correct
16 Correct 5 ms 29276 KB Output is correct
17 Correct 2940 ms 83936 KB Output is correct
18 Execution timed out 4048 ms 86632 KB Time limit exceeded
19 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 6 ms 29276 KB Output is correct
2 Correct 5 ms 29276 KB Output is correct
3 Correct 6 ms 29276 KB Output is correct
4 Correct 6 ms 29784 KB Output is correct
5 Correct 13 ms 29784 KB Output is correct
6 Correct 8 ms 29532 KB Output is correct
7 Correct 12 ms 29732 KB Output is correct
8 Correct 8 ms 29628 KB Output is correct
9 Correct 8 ms 29532 KB Output is correct
10 Correct 9 ms 29532 KB Output is correct
11 Correct 7 ms 29480 KB Output is correct
12 Correct 10 ms 29528 KB Output is correct
13 Correct 7 ms 29532 KB Output is correct
14 Correct 8 ms 29732 KB Output is correct
15 Correct 9 ms 29532 KB Output is correct
16 Correct 7 ms 29532 KB Output is correct
17 Correct 11 ms 29716 KB Output is correct
18 Correct 7 ms 29532 KB Output is correct
19 Correct 8 ms 29700 KB Output is correct
20 Correct 7 ms 29532 KB Output is correct
21 Correct 5 ms 29276 KB Output is correct
22 Correct 212 ms 79252 KB Output is correct
23 Correct 216 ms 78280 KB Output is correct
24 Correct 221 ms 79404 KB Output is correct
25 Correct 201 ms 78340 KB Output is correct
26 Correct 194 ms 76772 KB Output is correct
27 Correct 195 ms 75780 KB Output is correct
28 Correct 190 ms 76744 KB Output is correct
29 Correct 231 ms 75808 KB Output is correct
30 Correct 200 ms 79056 KB Output is correct
31 Correct 199 ms 75972 KB Output is correct
32 Correct 185 ms 76088 KB Output is correct
33 Correct 185 ms 76008 KB Output is correct
34 Correct 177 ms 75972 KB Output is correct
35 Correct 188 ms 75968 KB Output is correct
36 Correct 266 ms 79440 KB Output is correct
37 Correct 224 ms 78300 KB Output is correct
38 Correct 217 ms 78176 KB Output is correct
39 Correct 286 ms 79516 KB Output is correct
40 Correct 206 ms 78148 KB Output is correct
41 Correct 220 ms 76836 KB Output is correct
42 Correct 209 ms 76740 KB Output is correct
43 Correct 222 ms 75880 KB Output is correct
44 Correct 202 ms 75692 KB Output is correct
45 Correct 256 ms 78792 KB Output is correct
46 Correct 212 ms 78912 KB Output is correct
47 Correct 182 ms 76224 KB Output is correct
48 Correct 284 ms 76228 KB Output is correct
49 Correct 200 ms 75968 KB Output is correct
50 Correct 187 ms 75892 KB Output is correct
51 Correct 197 ms 76072 KB Output is correct
52 Correct 182 ms 75972 KB Output is correct
53 Correct 6 ms 29532 KB Output is correct
54 Correct 388 ms 78444 KB Output is correct
55 Correct 363 ms 79808 KB Output is correct
56 Correct 357 ms 78536 KB Output is correct
57 Correct 362 ms 78532 KB Output is correct
58 Correct 358 ms 78540 KB Output is correct
59 Correct 355 ms 79656 KB Output is correct
60 Correct 352 ms 78248 KB Output is correct
61 Correct 383 ms 78796 KB Output is correct
62 Correct 366 ms 78504 KB Output is correct
63 Correct 384 ms 78544 KB Output is correct
64 Correct 323 ms 77160 KB Output is correct
65 Correct 349 ms 77420 KB Output is correct
66 Correct 329 ms 77252 KB Output is correct
67 Correct 363 ms 75924 KB Output is correct
68 Correct 341 ms 75920 KB Output is correct
69 Correct 373 ms 76332 KB Output is correct
70 Correct 371 ms 79564 KB Output is correct
71 Correct 367 ms 76224 KB Output is correct
72 Correct 342 ms 75844 KB Output is correct
73 Correct 374 ms 79340 KB Output is correct
74 Correct 328 ms 76224 KB Output is correct
75 Correct 315 ms 76324 KB Output is correct
76 Correct 327 ms 76484 KB Output is correct
77 Correct 319 ms 76616 KB Output is correct
78 Correct 5 ms 29276 KB Output is correct
79 Correct 2940 ms 83936 KB Output is correct
80 Execution timed out 4048 ms 86632 KB Time limit exceeded
81 Halted 0 ms 0 KB -