답안 #876479

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
876479 2023-11-21T19:39:02 Z danikoynov Fish 2 (JOI22_fish2) C++14
36 / 100
4000 ms 32892 KB
#include<bits/stdc++.h>
#define endl '\n'

using namespace std;

typedef long long ll;

const int maxn = 1e5 + 10;


int n, q;
ll a[maxn], pref[maxn];
void input()
{
    cin >> n;
    for (int i = 1; i <= n; i ++)
        cin >> a[i];
    cin >> q;
    a[0] = 1e9 + 10;
    a[n + 1] = 1e9 + 10;

}

struct interval
{
    int left, right, pivot;

    interval(int _left = 0, int _right = 0, int _pivot = 0)
    {
        left = _left;
        right = _right;
        pivot = _pivot;
    }
    bool operator < (const interval &it) const
    {
        if (left != it.left)
            return left < it.left;
        if (right != it.right)
            return right > it.right;
        ///assert(pivot != it.pivot);
        return pivot < it.pivot;
    }
};

set < interval > ranges;

void get_ranges()
{

    for (int i = 1; i <= n; i ++)
        pref[i] = pref[i - 1] + a[i];
    pref[n + 1] = pref[n];

    ranges.clear();
    stack < int > st;
    st.push(0);
    for (int i = 1; i <= n; i ++)
    {
        while(!st.empty() && a[st.top()] < a[i])
            st.pop();

        ranges.insert(interval(st.top(), i, i));

        st.push(i);
    }

    while(!st.empty())
        st.pop();
    st.push(n + 1);
    for (int i = n; i > 0; i --)
    {
        while(!st.empty() && a[st.top()] < a[i])
            st.pop();

        ranges.insert(interval(i, st.top(), i));

        st.push(i);
    }
}

int b[maxn];

struct node
{
    int cnt, mx;

    node(int _cnt = 0, int _mx = 1e9 + 10)
    {
        cnt = _cnt;
        mx = _mx;
    }
};

node tree[4 * maxn];

node merge_node(node lf, node rf)
{
    if (lf.cnt == -1 || rf.mx < lf.mx)
        return rf;
    if (rf.cnt == -1 || lf.mx < rf.mx)
        return lf;

    return node(lf.cnt + rf.cnt, lf.mx);
}

void build_tree(int root, int left, int right)
{
    if (left == right)
    {
        tree[root].mx = b[left];
        tree[root].cnt = 1;
        return;
    }

    int mid = (left + right) / 2;
    build_tree(root * 2, left, mid);
    build_tree(root * 2 + 1, mid + 1, right);

    tree[root] = merge_node(tree[root * 2], tree[root * 2 + 1]);
}

node query(int root, int left, int right, int qleft, int qright)
{
    if (left > qright || right < qleft)
        return node(-1, 1e9 + 10);

    if (left >= qleft && right <= qright)
        return tree[root];

    int mid = (left + right) / 2;

    return merge_node(query(root * 2, left, mid, qleft, qright),
            query(root * 2 + 1, mid + 1, right, qleft, qright));
}

ll values[maxn];

struct segment_tree
{
    ll tree[4 * maxn], lazy[4 * maxn];


    void build_tree(int root, int left, int right)
    {
        lazy[root] = 0;
        if (left == right)
        {
            tree[root] = values[left];
            return;
        }

        int mid = (left + right) / 2;
        build_tree(root * 2, left, mid);
        build_tree(root * 2 + 1, mid + 1, right);

        tree[root] = max(tree[root * 2], tree[root * 2 + 1]);
    }

    void push_lazy(int root, int left, int right)
    {
        tree[root] += lazy[root];
        if (left != right)
        {
            lazy[root * 2] += lazy[root];
            lazy[root * 2 + 1] += lazy[root];
        }

        lazy[root] = 0;
    }

    void update_range(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft)
            return;

        if (left >= qleft && right <= qright)
        {
            lazy[root] += val;
            push_lazy(root, left, right);
            return;
        }

        int mid = (left + right) / 2;
        update_range(root * 2, left, mid, qleft, qright, val);
        update_range(root * 2 + 1, mid + 1, right, qleft, qright, val);

        tree[root] = max(tree[root * 2], tree[root * 2 + 1]);
    }

    ll walk_left(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft || tree[root] <= val)
            return n + 1;

        if (left == right)
            return left;

        int mid = (left + right) / 2;
        if (left >= qleft && right <= qright)
        {
            push_lazy(root * 2, left, mid);
            push_lazy(root * 2 + 1, mid + 1, right);
            if (tree[root * 2] > val)
                return walk_left(root * 2, left, mid, qleft, qright, val);
            return walk_left(root * 2 + 1, mid + 1, right, qleft, qright, val);
        }

        return min(walk_left(root * 2, left, mid, qleft, qright, val),
                walk_left(root * 2 + 1, mid + 1, right, qleft, qright, val));
    }

    ll walk_right(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft || tree[root] <= val)
            return 0;

        if (left == right)
            return left;

        int mid = (left + right) / 2;
        if (left >= qleft && right <= qright)
        {
            push_lazy(root * 2, left, mid);
            push_lazy(root * 2 + 1, mid + 1, right);
            if (tree[root * 2 + 1] > val)
                    return walk_right(root * 2 + 1, mid + 1, right, qleft, qright, val);
            return walk_right(root * 2, left, mid, qleft, qright, val);
        }

        return max(walk_right(root * 2, left, mid, qleft, qright, val),
                walk_right(root * 2 + 1, mid + 1, right, qleft, qright, val));
    }
};

segment_tree left_tree, right_tree;

ll fen[maxn];

void update_fen(int pos, ll val)
{
    for (int i = pos; i <= n; i += (i & -i))
        fen[i] += val;
}

ll query_fen(int pos)
{
    ll s = 0;
    for (int i = pos; i > 0; i -= (i & -i))
        s += fen[i];
    return s;
}

ll range_sum(int left, int right)
{
    return query_fen(right) - query_fen(left - 1);
}

void solve_query(int left, int right)
{
    int lb = left_tree.walk_right(1, 1, n, left, right, - query_fen(left - 1));
    int rb = right_tree.walk_left(1, 1, n, left, right, query_fen(right));


    cout << query(1, 1, n, lb, rb).cnt << endl;
}

void restructure()
{
    ///cout << "-------------" << endl;
    get_ranges();
    for (int i = 1; i <= n; i ++)
        b[i] = 0;
    for (interval cur : ranges)
    {
        ll mx = min(a[cur.left], a[cur.right]);
        if (range_sum(cur.left + 1, cur.right - 1) < mx)
        {
            ///cout << cur.left << " " << cur.right << endl;
            for (int i = cur.left + 1; i < cur.right; i ++)
                b[i] ++;
        }
    }
    build_tree(1, 1, n);



}
void simulate()
{
    for (int i = 1; i <= n; i ++)
        update_fen(i, a[i]);
    restructure();

    for (int i = 1; i <= n; i ++)
    {
        values[i] = a[i] - query_fen(i - 1);
    }
    left_tree.build_tree(1, 1, n);

    for (int i = 1; i <= n; i ++)
    {
        values[i] = a[i] + query_fen(i);
    }
    right_tree.build_tree(1, 1, n);
    for (int i = 1; i <= q; i ++)
    {
        int type;
        cin >> type;
        if (type == 1)
        {
            int idx;
            ll x;
            cin >> idx >> x;
            update_fen(idx, x - a[idx]);
            left_tree.update_range(1, 1, n, idx + 1, n, - (x - a[idx]));
            left_tree.update_range(1, 1, n, idx, idx, (x - a[idx]));
            right_tree.update_range(1, 1, n, idx, n, (x - a[idx]));
            right_tree.update_range(1, 1, n, idx, idx, (x - a[idx]));
            a[idx] = x;
            restructure();
        }
        else
        {
            int l, r;
            cin >> l >> r;
            solve_query(l, r);
        }
    }
}
void solve()
{
    input();
    simulate();
}

void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    speed();
    solve();
    return 0;
}
/*
12
32 32 4 1 1 1 1 4 4 16 32 128
1
2 8 10

*/
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 14684 KB Output is correct
2 Correct 2 ms 14684 KB Output is correct
3 Correct 2 ms 14684 KB Output is correct
4 Correct 2 ms 14684 KB Output is correct
5 Correct 45 ms 14680 KB Output is correct
6 Correct 13 ms 14680 KB Output is correct
7 Correct 42 ms 14684 KB Output is correct
8 Correct 25 ms 14952 KB Output is correct
9 Correct 13 ms 14684 KB Output is correct
10 Correct 48 ms 14684 KB Output is correct
11 Correct 9 ms 14888 KB Output is correct
12 Correct 53 ms 14684 KB Output is correct
13 Correct 15 ms 14680 KB Output is correct
14 Correct 44 ms 14684 KB Output is correct
15 Correct 34 ms 14684 KB Output is correct
16 Correct 13 ms 14684 KB Output is correct
17 Correct 44 ms 14680 KB Output is correct
18 Correct 8 ms 14684 KB Output is correct
19 Correct 37 ms 14684 KB Output is correct
20 Correct 15 ms 14680 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 14680 KB Output is correct
2 Correct 54 ms 32128 KB Output is correct
3 Correct 58 ms 32088 KB Output is correct
4 Correct 52 ms 32132 KB Output is correct
5 Correct 49 ms 32084 KB Output is correct
6 Correct 62 ms 32084 KB Output is correct
7 Correct 48 ms 32084 KB Output is correct
8 Correct 50 ms 32132 KB Output is correct
9 Correct 52 ms 32336 KB Output is correct
10 Correct 49 ms 32080 KB Output is correct
11 Correct 47 ms 32080 KB Output is correct
12 Correct 47 ms 32092 KB Output is correct
13 Correct 48 ms 32016 KB Output is correct
14 Correct 45 ms 32084 KB Output is correct
15 Correct 49 ms 32084 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 14684 KB Output is correct
2 Correct 2 ms 14684 KB Output is correct
3 Correct 2 ms 14684 KB Output is correct
4 Correct 2 ms 14684 KB Output is correct
5 Correct 45 ms 14680 KB Output is correct
6 Correct 13 ms 14680 KB Output is correct
7 Correct 42 ms 14684 KB Output is correct
8 Correct 25 ms 14952 KB Output is correct
9 Correct 13 ms 14684 KB Output is correct
10 Correct 48 ms 14684 KB Output is correct
11 Correct 9 ms 14888 KB Output is correct
12 Correct 53 ms 14684 KB Output is correct
13 Correct 15 ms 14680 KB Output is correct
14 Correct 44 ms 14684 KB Output is correct
15 Correct 34 ms 14684 KB Output is correct
16 Correct 13 ms 14684 KB Output is correct
17 Correct 44 ms 14680 KB Output is correct
18 Correct 8 ms 14684 KB Output is correct
19 Correct 37 ms 14684 KB Output is correct
20 Correct 15 ms 14680 KB Output is correct
21 Correct 3 ms 14680 KB Output is correct
22 Correct 54 ms 32128 KB Output is correct
23 Correct 58 ms 32088 KB Output is correct
24 Correct 52 ms 32132 KB Output is correct
25 Correct 49 ms 32084 KB Output is correct
26 Correct 62 ms 32084 KB Output is correct
27 Correct 48 ms 32084 KB Output is correct
28 Correct 50 ms 32132 KB Output is correct
29 Correct 52 ms 32336 KB Output is correct
30 Correct 49 ms 32080 KB Output is correct
31 Correct 47 ms 32080 KB Output is correct
32 Correct 47 ms 32092 KB Output is correct
33 Correct 48 ms 32016 KB Output is correct
34 Correct 45 ms 32084 KB Output is correct
35 Correct 49 ms 32084 KB Output is correct
36 Execution timed out 4100 ms 32120 KB Time limit exceeded
37 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 14680 KB Output is correct
2 Correct 54 ms 32128 KB Output is correct
3 Correct 58 ms 32088 KB Output is correct
4 Correct 52 ms 32132 KB Output is correct
5 Correct 49 ms 32084 KB Output is correct
6 Correct 62 ms 32084 KB Output is correct
7 Correct 48 ms 32084 KB Output is correct
8 Correct 50 ms 32132 KB Output is correct
9 Correct 52 ms 32336 KB Output is correct
10 Correct 49 ms 32080 KB Output is correct
11 Correct 47 ms 32080 KB Output is correct
12 Correct 47 ms 32092 KB Output is correct
13 Correct 48 ms 32016 KB Output is correct
14 Correct 45 ms 32084 KB Output is correct
15 Correct 49 ms 32084 KB Output is correct
16 Correct 2 ms 14684 KB Output is correct
17 Correct 195 ms 32300 KB Output is correct
18 Correct 191 ms 32592 KB Output is correct
19 Correct 190 ms 32336 KB Output is correct
20 Correct 196 ms 32380 KB Output is correct
21 Correct 201 ms 32336 KB Output is correct
22 Correct 223 ms 32592 KB Output is correct
23 Correct 184 ms 32336 KB Output is correct
24 Correct 198 ms 32412 KB Output is correct
25 Correct 189 ms 32340 KB Output is correct
26 Correct 204 ms 32344 KB Output is correct
27 Correct 181 ms 32892 KB Output is correct
28 Correct 178 ms 32460 KB Output is correct
29 Correct 169 ms 32596 KB Output is correct
30 Correct 192 ms 32588 KB Output is correct
31 Correct 191 ms 32336 KB Output is correct
32 Correct 220 ms 32340 KB Output is correct
33 Correct 177 ms 32596 KB Output is correct
34 Correct 205 ms 32424 KB Output is correct
35 Correct 183 ms 32340 KB Output is correct
36 Correct 212 ms 32476 KB Output is correct
37 Correct 172 ms 32324 KB Output is correct
38 Correct 180 ms 32224 KB Output is correct
39 Correct 168 ms 32696 KB Output is correct
40 Correct 159 ms 32592 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 14680 KB Output is correct
2 Correct 54 ms 32128 KB Output is correct
3 Correct 58 ms 32088 KB Output is correct
4 Correct 52 ms 32132 KB Output is correct
5 Correct 49 ms 32084 KB Output is correct
6 Correct 62 ms 32084 KB Output is correct
7 Correct 48 ms 32084 KB Output is correct
8 Correct 50 ms 32132 KB Output is correct
9 Correct 52 ms 32336 KB Output is correct
10 Correct 49 ms 32080 KB Output is correct
11 Correct 47 ms 32080 KB Output is correct
12 Correct 47 ms 32092 KB Output is correct
13 Correct 48 ms 32016 KB Output is correct
14 Correct 45 ms 32084 KB Output is correct
15 Correct 49 ms 32084 KB Output is correct
16 Correct 2 ms 14684 KB Output is correct
17 Execution timed out 4070 ms 32124 KB Time limit exceeded
18 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 14684 KB Output is correct
2 Correct 2 ms 14684 KB Output is correct
3 Correct 2 ms 14684 KB Output is correct
4 Correct 2 ms 14684 KB Output is correct
5 Correct 45 ms 14680 KB Output is correct
6 Correct 13 ms 14680 KB Output is correct
7 Correct 42 ms 14684 KB Output is correct
8 Correct 25 ms 14952 KB Output is correct
9 Correct 13 ms 14684 KB Output is correct
10 Correct 48 ms 14684 KB Output is correct
11 Correct 9 ms 14888 KB Output is correct
12 Correct 53 ms 14684 KB Output is correct
13 Correct 15 ms 14680 KB Output is correct
14 Correct 44 ms 14684 KB Output is correct
15 Correct 34 ms 14684 KB Output is correct
16 Correct 13 ms 14684 KB Output is correct
17 Correct 44 ms 14680 KB Output is correct
18 Correct 8 ms 14684 KB Output is correct
19 Correct 37 ms 14684 KB Output is correct
20 Correct 15 ms 14680 KB Output is correct
21 Correct 3 ms 14680 KB Output is correct
22 Correct 54 ms 32128 KB Output is correct
23 Correct 58 ms 32088 KB Output is correct
24 Correct 52 ms 32132 KB Output is correct
25 Correct 49 ms 32084 KB Output is correct
26 Correct 62 ms 32084 KB Output is correct
27 Correct 48 ms 32084 KB Output is correct
28 Correct 50 ms 32132 KB Output is correct
29 Correct 52 ms 32336 KB Output is correct
30 Correct 49 ms 32080 KB Output is correct
31 Correct 47 ms 32080 KB Output is correct
32 Correct 47 ms 32092 KB Output is correct
33 Correct 48 ms 32016 KB Output is correct
34 Correct 45 ms 32084 KB Output is correct
35 Correct 49 ms 32084 KB Output is correct
36 Execution timed out 4100 ms 32120 KB Time limit exceeded
37 Halted 0 ms 0 KB -