답안 #876477

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
876477 2023-11-21T19:26:49 Z danikoynov Fish 2 (JOI22_fish2) C++14
31 / 100
4000 ms 22184 KB
#include<bits/stdc++.h>
#define endl '\n'

using namespace std;

typedef long long ll;

const int maxn = 1e5 + 10;


int n, q;
ll a[maxn], pref[maxn];
void input()
{
    cin >> n;
    for (int i = 1; i <= n; i ++)
        cin >> a[i];
    cin >> q;
    a[0] = 1e9 + 10;
    a[n + 1] = 1e9 + 10;

}

vector < pair < int, int > > ranges;
void get_ranges()
{

    for (int i = 1; i <= n; i ++)
        pref[i] = pref[i - 1] + a[i];
    pref[n + 1] = pref[n];

    ranges.clear();
    stack < int > st;
    st.push(0);
    for (int i = 1; i <= n; i ++)
    {
        while(!st.empty() && a[st.top()] < a[i])
            st.pop();


        if (pref[i - 1] - pref[st.top()] < a[i])
            ranges.push_back({st.top() + 1, i - 1});

        st.push(i);
    }

    while(!st.empty())
        st.pop();
    st.push(n + 1);
    for (int i = n; i > 0; i --)
    {
        while(!st.empty() && a[st.top()] < a[i])
            st.pop();

        if (pref[st.top() - 1] - pref[i] < a[i])
            ranges.push_back({i + 1, st.top() - 1});

        st.push(i);
    }
}

int b[maxn];

struct node
{
    int cnt, mx;

    node(int _cnt = 0, int _mx = 1e9 + 10)
    {
        cnt = _cnt;
        mx = _mx;
    }
};

node tree[4 * maxn];

node merge_node(node lf, node rf)
{
    if (lf.cnt == -1 || rf.mx < lf.mx)
        return rf;
    if (rf.cnt == -1 || lf.mx < rf.mx)
        return lf;

    return node(lf.cnt + rf.cnt, lf.mx);
}

void build_tree(int root, int left, int right)
{
    if (left == right)
    {
        tree[root].mx = b[left];
        tree[root].cnt = 1;
        return;
    }

    int mid = (left + right) / 2;
    build_tree(root * 2, left, mid);
    build_tree(root * 2 + 1, mid + 1, right);

    tree[root] = merge_node(tree[root * 2], tree[root * 2 + 1]);
}

node query(int root, int left, int right, int qleft, int qright)
{
    if (left > qright || right < qleft)
        return node(-1, 1e9 + 10);

    if (left >= qleft && right <= qright)
        return tree[root];

    int mid = (left + right) / 2;

    return merge_node(query(root * 2, left, mid, qleft, qright),
            query(root * 2 + 1, mid + 1, right, qleft, qright));
}

ll values[maxn];

struct segment_tree
{
    ll tree[4 * maxn], lazy[4 * maxn];


    void build_tree(int root, int left, int right)
    {
        lazy[root] = 0;
        if (left == right)
        {
            tree[root] = values[left];
            return;
        }

        int mid = (left + right) / 2;
        build_tree(root * 2, left, mid);
        build_tree(root * 2 + 1, mid + 1, right);

        tree[root] = max(tree[root * 2], tree[root * 2 + 1]);
    }

    void push_lazy(int root, int left, int right)
    {
        tree[root] += lazy[root];
        if (left != right)
        {
            lazy[root * 2] += lazy[root];
            lazy[root * 2 + 1] += lazy[root];
        }

        lazy[root] = 0;
    }

    void update_range(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft)
            return;

        if (left >= qleft && right <= qright)
        {
            lazy[root] += val;
            push_lazy(root, left, right);
            return;
        }

        int mid = (left + right) / 2;
        update_range(root * 2, left, mid, qleft, qright, val);
        update_range(root * 2 + 1, mid + 1, right, qleft, qright, val);

        tree[root] = max(tree[root * 2], tree[root * 2 + 1]);
    }

    ll walk_left(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft || tree[root] <= val)
            return n + 1;

        if (left == right)
            return left;

        int mid = (left + right) / 2;
        if (left >= qleft && right <= qright)
        {
            if (tree[root * 2] > val)
                return walk_left(root * 2, left, mid, qleft, qright, val);
            return walk_left(root * 2 + 1, mid + 1, right, qleft, qright, val);
        }

        return min(walk_left(root * 2, left, mid, qleft, qright, val),
                walk_left(root * 2 + 1, mid + 1, right, qleft, qright, val));
    }

    ll walk_right(int root, int left, int right, int qleft, int qright, ll val)
    {
        push_lazy(root, left, right);
        if (left > qright || right < qleft || tree[root] <= val)
            return 0;

        if (left == right)
            return left;

        int mid = (left + right) / 2;
        if (left >= qleft && right <= qright)
        {
            if (tree[root * 2 + 1] > val)
                    return walk_right(root * 2 + 1, mid + 1, right, qleft, qright, val);
            return walk_right(root * 2, left, mid, qleft, qright, val);
        }

        return max(walk_right(root * 2, left, mid, qleft, qright, val),
                walk_right(root * 2 + 1, mid + 1, right, qleft, qright, val));
    }
};

segment_tree left_tree, right_tree;

ll fen[maxn];

void update_fen(int pos, ll val)
{
    for (int i = pos; i <= n; i += (i & -i))
        fen[i] += val;
}

ll query_fen(int pos)
{
    ll s = 0;
    for (int i = pos; i > 0; i -= (i & -i))
        s += fen[i];
    return s;
}

ll range_sum(int left, int right)
{
    return query_fen(right) - query_fen(left - 1);
}

void solve_query(int left, int right)
{



    int lb = left_tree.walk_right(1, 1, n, left, right, - query_fen(left - 1));
    int rb = right_tree.walk_left(1, 1, n, left, right, query_fen(right));


    cout << query(1, 1, n, lb, rb).cnt << endl;
}

void restructure()
{
    get_ranges();
    for (int i = 1; i <= n; i ++)
        b[i] = 0;
    for (pair < int, int > cur : ranges)
        for (int i = cur.first; i <= cur.second; i ++)
        b[i] ++;
    build_tree(1, 1, n);



        for (int i = 1; i <= n; i ++)
    {
        values[i] = a[i] - query_fen(i - 1);
    }
    left_tree.build_tree(1, 1, n);

}
void simulate()
{
    for (int i = 1; i <= n; i ++)
        update_fen(i, a[i]);
    restructure();

    for (int i = 1; i <= n; i ++)
    {
        values[i] = a[i] + query_fen(i);
    }
    right_tree.build_tree(1, 1, n);
    for (int i = 1; i <= q; i ++)
    {
        int type;
        cin >> type;
        if (type == 1)
        {
            int idx;
            ll x;
            cin >> idx >> x;
            update_fen(idx, x - a[idx]);
            //left_tree.update_range(1, 1, n, idx + 1, n, - (x - a[idx]));
            //left_tree.update_range(1, 1, n, idx, idx, (x - a[idx]));
            right_tree.update_range(1, 1, n, idx, n, (x - a[idx]));
            right_tree.update_range(1, 1, n, idx, idx, (x - a[idx]));
            a[idx] = x;
            restructure();
        }
        else
        {
            int l, r;
            cin >> l >> r;
            solve_query(l, r);
        }
    }
}
void solve()
{
    input();
    simulate();
}

void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    speed();
    solve();
    return 0;
}
/*
12
32 32 4 1 1 1 1 4 4 16 32 128
1
2 8 10

*/
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 14680 KB Output is correct
2 Correct 2 ms 14680 KB Output is correct
3 Correct 2 ms 14684 KB Output is correct
4 Correct 2 ms 14684 KB Output is correct
5 Incorrect 12 ms 14836 KB Output isn't correct
6 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 14684 KB Output is correct
2 Correct 15 ms 21224 KB Output is correct
3 Correct 16 ms 21204 KB Output is correct
4 Correct 16 ms 21204 KB Output is correct
5 Correct 20 ms 21280 KB Output is correct
6 Correct 19 ms 20692 KB Output is correct
7 Correct 15 ms 20832 KB Output is correct
8 Correct 18 ms 20720 KB Output is correct
9 Correct 14 ms 21016 KB Output is correct
10 Correct 23 ms 21172 KB Output is correct
11 Correct 15 ms 21204 KB Output is correct
12 Correct 15 ms 20692 KB Output is correct
13 Correct 16 ms 20892 KB Output is correct
14 Correct 22 ms 21044 KB Output is correct
15 Correct 18 ms 20964 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 14680 KB Output is correct
2 Correct 2 ms 14680 KB Output is correct
3 Correct 2 ms 14684 KB Output is correct
4 Correct 2 ms 14684 KB Output is correct
5 Incorrect 12 ms 14836 KB Output isn't correct
6 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 14684 KB Output is correct
2 Correct 15 ms 21224 KB Output is correct
3 Correct 16 ms 21204 KB Output is correct
4 Correct 16 ms 21204 KB Output is correct
5 Correct 20 ms 21280 KB Output is correct
6 Correct 19 ms 20692 KB Output is correct
7 Correct 15 ms 20832 KB Output is correct
8 Correct 18 ms 20720 KB Output is correct
9 Correct 14 ms 21016 KB Output is correct
10 Correct 23 ms 21172 KB Output is correct
11 Correct 15 ms 21204 KB Output is correct
12 Correct 15 ms 20692 KB Output is correct
13 Correct 16 ms 20892 KB Output is correct
14 Correct 22 ms 21044 KB Output is correct
15 Correct 18 ms 20964 KB Output is correct
16 Correct 2 ms 14684 KB Output is correct
17 Correct 147 ms 21424 KB Output is correct
18 Correct 165 ms 22184 KB Output is correct
19 Correct 148 ms 21596 KB Output is correct
20 Correct 166 ms 21720 KB Output is correct
21 Correct 145 ms 21588 KB Output is correct
22 Correct 135 ms 21700 KB Output is correct
23 Correct 146 ms 21600 KB Output is correct
24 Correct 167 ms 21612 KB Output is correct
25 Correct 147 ms 21452 KB Output is correct
26 Correct 177 ms 21632 KB Output is correct
27 Correct 145 ms 21444 KB Output is correct
28 Correct 162 ms 21436 KB Output is correct
29 Correct 160 ms 21448 KB Output is correct
30 Correct 175 ms 21192 KB Output is correct
31 Correct 161 ms 21016 KB Output is correct
32 Correct 183 ms 21520 KB Output is correct
33 Correct 130 ms 21444 KB Output is correct
34 Correct 156 ms 21448 KB Output is correct
35 Correct 157 ms 21448 KB Output is correct
36 Correct 167 ms 21700 KB Output is correct
37 Correct 131 ms 20944 KB Output is correct
38 Correct 122 ms 20944 KB Output is correct
39 Correct 135 ms 21452 KB Output is correct
40 Correct 125 ms 21788 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 14684 KB Output is correct
2 Correct 15 ms 21224 KB Output is correct
3 Correct 16 ms 21204 KB Output is correct
4 Correct 16 ms 21204 KB Output is correct
5 Correct 20 ms 21280 KB Output is correct
6 Correct 19 ms 20692 KB Output is correct
7 Correct 15 ms 20832 KB Output is correct
8 Correct 18 ms 20720 KB Output is correct
9 Correct 14 ms 21016 KB Output is correct
10 Correct 23 ms 21172 KB Output is correct
11 Correct 15 ms 21204 KB Output is correct
12 Correct 15 ms 20692 KB Output is correct
13 Correct 16 ms 20892 KB Output is correct
14 Correct 22 ms 21044 KB Output is correct
15 Correct 18 ms 20964 KB Output is correct
16 Correct 2 ms 14680 KB Output is correct
17 Execution timed out 4058 ms 21204 KB Time limit exceeded
18 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 14680 KB Output is correct
2 Correct 2 ms 14680 KB Output is correct
3 Correct 2 ms 14684 KB Output is correct
4 Correct 2 ms 14684 KB Output is correct
5 Incorrect 12 ms 14836 KB Output isn't correct
6 Halted 0 ms 0 KB -