Submission #869456

#TimeUsernameProblemLanguageResultExecution timeMemory
869456sleepntsheepKangaroo (CEOI16_kangaroo)C++17
6 / 100
1 ms348 KiB
#include <iostream> #include <cstring> #include <vector> #include <algorithm> #include <deque> #include <set> #include <utility> #include <array> #pragma GCC optimize("Ofast,unroll-loops") #pragma GCC target("avx2,tune=native") using namespace std; #define ALL(x) x.begin(), x.end() #define ShinLena cin.tie(nullptr)->sync_with_stdio(false); using ll = long long; #define N 2005 const ll M = 1000000007; template <int MOD=M> struct Modular { int value; static const int MOD_value = MOD; Modular(long long v = 0) { if (v > MOD) value = v % MOD; else value = v; if (value < 0) value += MOD; } Modular(long long a, long long b) : value(0){ *this += a; *this /= b;} Modular& operator+=(Modular const& b) {value += b.value; if (value >= MOD) value -= MOD; return *this;} Modular& operator-=(Modular const& b) {value -= b.value; if (value < 0) value += MOD;return *this;} Modular& operator*=(Modular const& b) {value = (long long)value * b.value % MOD;return *this;} friend Modular mexp(Modular a, long long e) { Modular res = 1; while (e) { if (e&1) res *= a; a *= a; e >>= 1; } return res; } friend Modular inverse(Modular a) { return mexp(a, MOD - 2); } Modular& operator/=(Modular const& b) { return *this *= inverse(b); } friend Modular operator+(Modular a, Modular const b) { return a += b; } friend Modular operator-(Modular a, Modular const b) { return a -= b; } friend Modular operator-(Modular const a) { return 0 - a; } friend Modular operator%(Modular const a, Modular const b) { return a.value % b.value; } friend Modular operator*(Modular a, Modular const b) { return a *= b; } friend Modular operator/(Modular a, Modular const b) { return a /= b; } friend std::ostream& operator<<(std::ostream& os, Modular const& a) {return os << a.value;} friend bool operator==(Modular const& a, Modular const& b) {return a.value == b.value;} friend bool operator!=(Modular const& a, Modular const& b) {return a.value != b.value;} }; ll n, cs, cf; Modular<M> dp[2][N][2][2]; int main() { ShinLena; cin >> n >> cs >> cf; if (cs > cf) swap(cs, cf); dp[0][0][0][0] = 1; for (int I = 1, i = 1; i <= n; ++i, I ^= 1) { memset(dp[I], 0, sizeof *dp); if (i == cs) { for (int j = 1; j <= i; ++j) { dp[I][j][0][0] = dp[!I][j-1][0][0]; dp[I][j][1][0] = dp[!I][j][0][0]; dp[I][j][0][1] = dp[!I][j-1][0][1]; dp[I][j][1][1] = dp[!I][j][0][1]; } } else if (i == cf) { for (int j = 1; j <= i; ++j) { dp[I][j][0][0] = dp[!I][j-1][0][0]; dp[I][j][1][0] = dp[!I][j-1][1][0]; dp[I][j][0][1] = dp[!I][j][0][0]; dp[I][j][1][1] = dp[!I][j][1][0]; } } else if (i < cs) { for (int j = 1; j <= i; ++j) { dp[I][j][0][0] = ((1ll * dp[!I][j-1][0][0] * j % M) + (1ll * dp[!I][j+1][0][0] * j % M)) % M; dp[I][j][1][0] = ((1ll * dp[!I][j][0][0]) + (1ll * dp[!I][j-1][1][0] * (j-1) % M) + (1ll * dp[!I][j+1][1][0] * j % M)) % M; dp[I][j][0][1] = ((1ll * dp[!I][j][0][0]) + (1ll * dp[!I][j-1][0][1] * (j-1) % M) + (1ll * dp[!I][j+1][0][1] * j % M)) % M; dp[I][j][1][1] = ((1ll * dp[!I][j][1][0]) + (1ll * dp[!I][j][0][1]) + (1ll * dp[!I][j-1][1][1] * (j-2) % M) + (1ll * dp[!I][j+1][1][1])) % M; } } else if (i < cf) { for (int j = 1; j <= i; ++j) { dp[I][j][0][0] = ((1ll * dp[!I][j-1][0][0] * (j-1) % M) + (1ll * dp[!I][j+1][0][0] * j % M)) % M; dp[I][j][1][0] = ((0) + (1ll * dp[!I][j-1][1][0] * (j-1) % M) + (1ll * dp[!I][j+1][1][0] * j % M)) % M; dp[I][j][0][1] = ((1ll * dp[!I][j][0][0]) + (1ll * dp[!I][j-1][0][1] * (j-2) % M) + (1ll * dp[!I][j+1][0][1] * j % M)) % M; dp[I][j][1][1] = ((1ll * dp[!I][j][1][0]) + (0) + (1ll * dp[!I][j-1][1][1] * (j-2) % M) + (1ll * dp[!I][j+1][1][1])) % M; } } else { for (int j = 1; j <= i; ++j) { dp[I][j][0][0] = ((1ll * dp[!I][j-1][0][0] * (j-2) % M) + (1ll * dp[!I][j+1][0][0] * j % M)) % M; dp[I][j][1][0] = ((0) + (1ll * dp[!I][j-1][1][0] * (j-2) % M) + (1ll * dp[!I][j+1][1][0] * j % M)) % M; dp[I][j][0][1] = ((0) + (1ll * dp[!I][j-1][0][1] * (j-2) % M) + (1ll * dp[!I][j+1][0][1] * j % M)) % M; dp[I][j][1][1] = ((0) + (0) + (1ll * dp[!I][j-1][1][1] * (j-2) % M) + (1ll * dp[!I][j+1][1][1])) % M; } } } cout << (1ll * dp[n&1][1][0][0] + dp[n&1][1][1][0] + dp[n&1][1][0][1] + dp[n&1][1][1][1]) % M; return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...