Submission #864974

# Submission time Handle Problem Language Result Execution time Memory
864974 2023-10-23T20:53:39 Z danikoynov New Home (APIO18_new_home) C++14
57 / 100
5000 ms 1048576 KB
    #include<bits/stdc++.h>
    #define endl '\n'
        
    using namespace std;
    typedef long long ll;
        
    const int maxn = 3e5 + 10, inf = 1e9;
        
    struct store
    {
        int x, t, a, b;
    }s[maxn];
        
    struct query
    {
        int l, y, idx;
    }task[maxn];
        
    int n, k, q;
    int readInt () {
        bool minus = false;
        int result = 0;
        char ch;
        ch = getchar();
        while (true) {
            if (ch == '-') break;
            if (ch >= '0' && ch <= '9') break;
            ch = getchar();
        }
        if (ch == '-') minus = true; else result = ch-'0';
        while (true) {
            ch = getchar();
            if (ch < '0' || ch > '9') break;
            result = result*10 + (ch - '0');
        }
        if (minus)
            return -result;
        else
            return result;
    }
    void input()
    {
        n = readInt();
        k = readInt();
        q = readInt();
        ///cin >> n >> k >> q;
        for (int i = 1; i <= n; i ++)
        {
            s[i].x = readInt();
            s[i].t = readInt();
            s[i].a = readInt();
            s[i].b = readInt();
            ///        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
        }
        
        for (int i = 1; i <= q; i ++)
        {
                task[i].l = readInt();
                task[i].y = readInt();
                task[i].idx = i;
            ///cin >> task[i].l >> task[i].y, task[i].idx = i;
        }
    }
        
     
        
    bool cmp_query(query &t1, query &t2)
    {
        return t1.l < t2.l;
    }
        
    struct event
    {
        int type, cor, add, arrive;
        
        event(int _type, int _cor, int _add, int _arrive)
        {
            type = _type;
            cor = _cor;
            add = _add;
            arrive = _arrive;
        }
    };
        
    bool cmp_event(event &e1, event &e2)
    {
        if (e1.arrive != e2.arrive)
            return e1.arrive < e2.arrive;
        
        if (e1.add != e2.add)
            return e1.add < e2.add;
        
        return e1.cor < e2.cor; /// could have dublicates
    }
        
     
        
    multiset < int > act[maxn];
    
    struct interval_ray
    {
        int s, e;
        pair < int, int > ray;
        
        interval_ray(int _s, int _e, pair < int, int > _ray)
        {
            s = _s;
            e = _e;
            ray = _ray;
        }
     
        interval_ray(int &_s, int &_e, pair < int, int > &_ray)
        {
            s = _s;
            e = _e;
            ray = _ray;
        }
    };
     
    vector < interval_ray > seg_left, seg_right;
        struct hash_pair {
        template <class T1, class T2>
        long long operator()(const pair<T1, T2>& p) const
        {
            auto hash1 = hash<T1>{}(p.first);
            auto hash2 = hash<T2>{}(p.second);
            return (hash1 << 16) + hash2;             
        }
    };
    
    unordered_map < int, int > cnt[maxn];
    unordered_map < int, int > ray_right[maxn], ray_left[maxn];
    vector < int > dat;
    void make_left_segment(int start, int finish, int timer, int type)
    {
        ///cout << "left " << start << " " << finish << " " << timer << endl;
        seg_left.push_back(interval_ray(ray_left[type][start], timer - 1, {start, finish}));
        ray_left[type][start] = 0;
    }
        
    void make_right_segment(int start, int finish, int timer, int type)
    {
        seg_right.push_back(interval_ray(ray_right[type][start], timer - 1, {start, finish}));
        ray_right[type][start] = 0;
    }
        
    void add_event(int type, int cor, int timer)
    {
        cnt[type][cor] ++;
        if (cnt[type][cor] > 1)
            return;

        multiset < int > :: iterator it = act[type].upper_bound(cor);
        int aft = *it;
        int bef = *prev(it);
        
        if (bef == -inf && aft == inf)
        {
            
            make_right_segment(-inf, inf, timer, type);
            ray_left[type][cor] = timer;
            ray_right[type][cor] = timer;
        }
        else
        if (bef == - inf)
        {
            make_left_segment(aft, -inf, timer, type);
            int mid = (cor + aft) / 2;
            ray_right[type][cor] = timer;
            ray_left[type][aft] = timer;
            ray_left[type][cor] = timer;
        }
        else
        if (aft == inf)
        {
            make_right_segment(bef, inf, timer, type);
            int mid = (bef + cor) / 2;
            ray_left[type][cor] = timer;
            ray_right[type][bef] = timer;
            ray_right[type][cor] = timer;
        }
        else
        {
            int mid = (bef + aft) / 2;
            make_right_segment(bef, mid, timer, type);
            make_left_segment(aft, mid + 1, timer, type);
            assert(ray_right[type][cor] == 0);
            assert(ray_left[type][aft] == 0);
            int mid_left = (bef + cor) / 2;
            ray_right[type][bef] = timer;
            ray_left[type][cor] = timer;
            int mid_right = (cor + aft) / 2;
            ray_right[type][cor] = timer;
            ray_left[type][aft] = timer;
        }
        
        act[type].insert(cor);
    }
        
        
    void remove_event(int type, int cor, int timer)
    {
        cnt[type][cor] --;
        if (cnt[type][cor] > 0)
            return;
        multiset < int > :: iterator it = act[type].find(cor);
        int aft = *next(it);
        int bef = *prev(it);
        
        if (bef == -inf && aft == inf)
        {
            ///cout << "reverse " << timer << endl;
        
            make_left_segment(cor, -inf, timer, type);
            make_right_segment(cor, +inf, timer, type);
            ray_right[type][-inf] = timer;
        
        }
        else
        if (bef == -inf)
        {
        
            ///cout << "step " << timer << endl;
            make_left_segment(cor, -inf, timer, type);
            int mid = (cor + aft) / 2;
            make_right_segment(cor, mid, timer, type);
            make_left_segment(aft, mid + 1, timer, type);
            ray_left[type][aft] = timer;
        
        
        }
        else
        if (aft == inf)
        {
        
            make_right_segment(cor, inf, timer, type);
            int mid = (bef + cor) / 2;
            make_left_segment(cor, mid + 1, timer, type);
            make_right_segment(bef, mid, timer, type);
            ray_right[type][bef] = timer;
        }
        else
        {
            int mid = (bef + aft) / 2;
            ///assert((ray_right[type][{bef, mid}]) == 0);
            ///assert((ray_left[type][{aft, mid + 1}]) == 0);
        
            int mid_left = (bef + cor) / 2;
            make_right_segment(bef, mid_left, timer, type);
            make_left_segment(cor, mid_left + 1, timer, type);
            int mid_right = (aft + cor) / 2;
            make_right_segment(cor, mid_right, timer, type);
            make_left_segment(aft, mid_right + 1, timer, type);
        
                    ray_right[type][bef] = timer;
            ray_left[type][aft] = timer;
        
        }
        
        act[type].erase(it);
    }
        
    int ans[maxn];
        
    vector < interval_ray > tree_left[maxn * 7], tree_right[maxn * 7];
    int pt_lf[7 * maxn], bs_lf[7 * maxn];
    int pt_rf[7 * maxn], bs_rf[7 * maxn];
        
    bool cmp_ray_second(interval_ray r1, interval_ray r2)
    {
        return r1.ray.second < r2.ray.second;
    }
    void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
    {
        if (left > qright || right < qleft)
            return;
        
        if (left >= qleft && right <= qright)
        {
            if (type == -1)
                tree_left[root].push_back(ray);
            else
                tree_right[root].push_back(ray);
            return;
        }
        
        int mid = (left + right) / 2;
        update_range(root * 2, left, mid, qleft, qright, ray, type);
        update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);
        
    }
        
    unordered_map < int, int > event_times;
        
    void answer_queries()
    {
        sort(task + 1, task + q + 1, cmp_query);
        
        vector < event > events;
        for (int i = 1; i <= n; i ++)
        {
            events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
            events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
        }
        
        sort(events.begin(), events.end(), cmp_event);
        
        for (int i = 1; i <= k; i ++)
        {
            act[i].insert(-inf);
            act[i].insert(inf);
            ray_right[i][-inf] = 1;
        }
        
        
        int cnt = 0;
        dat.push_back(1);
        dat.push_back(0);
        
        for (event cur : events)
        {
            ///dat.push_back(cur.arrive - 1);
            dat.push_back(cur.arrive);
            ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
            if (cur.add == 1)
                add_event(cur.type, cur.cor, cur.arrive);
            else
                remove_event(cur.type, cur.cor, cur.arrive);
        }
        
        dat.push_back(inf - 1);
        dat.push_back(inf);
        
        for (int i = 1; i <= q; i ++)
            dat.push_back(task[i].y);
        
        sort(dat.begin(), dat.end());
        cnt ++;
        event_times[dat[0]] = cnt;
        for (int i = 1; i < dat.size(); i ++)
        {
            if (dat[i] == dat[i - 1])
                continue;
            cnt ++;
            event_times[dat[i]] = cnt;
        }
        
        
        for (int i = 1; i <= k; i ++)
            for (auto it : ray_right[i])
            {
                ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
                if (it.second != 0)
                    make_right_segment(it.first, inf, inf, i);
            }
        
        
        sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
        sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
        for (interval_ray cur : seg_left)
        {
            //assert(event_times[cur.e + 1] != 0);
            update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, -1);
        ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
        }
        
        for (interval_ray cur : seg_right)
        {
            //assert(event_times[cur.e + 1] != 0);
            update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, 1);
            ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
        }
        
        
        for (int i = 1; i <= 4 * cnt; i ++)
        {
            pt_rf[i] = (int)(tree_right[i].size()) - 1;
            bs_rf[i] = inf;
        
            pt_lf[i] = 0;
            bs_lf[i] = -inf;
            ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
            ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
        }
        
        for (int i = q; i > 0; i --)
        {
            int longest = 0;
            int pos = event_times[task[i].y];
            int root = 1, left = 1, right = cnt;
        
            while(true)
            {
        
                while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
                {
                    bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                    pt_rf[root] --;
                }
                longest = max(longest, task[i].l - bs_rf[root]);
        
        
                if (left == right)
                    break;
        
                int mid = (left + right) / 2;
                if (pos <= mid)
                {
                    root *= 2;
                    right = mid;
                }
                else
                {
                    root = root * 2 + 1;
                    left = mid + 1;
                }
            }
        
            ans[task[i].idx] = max(ans[task[i].idx], longest);
        }
        
        for (int i = 1; i <= q; i ++)
        {
            int longest = 0;
            int pos = event_times[task[i].y];
            int root = 1, left = 1, right = cnt;
            while(true)
            {
                ///cout << "step " << root << " " << left << " " << right << endl;
                while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
                {
                    bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                    pt_lf[root] ++;
                }
                longest = max(longest, bs_lf[root] - task[i].l);
                /**for (interval_ray cur : tree_left[root])
                {
                    if (task[i].l >= cur.ray.second)
                        longest = max(longest, cur.ray.first - task[i].l);
                }*/
        
        
                if (left == right)
                    break;
        
                int mid = (left + right) / 2;
                if (pos <= mid)
                {
                    root *= 2;
                    right = mid;
                }
                else
                {
                    root = root * 2 + 1;
                    left = mid + 1;
                }
            }
        
            ans[task[i].idx] = max(ans[task[i].idx], longest);
        }
        
        for (int i = 1; i <= q; i ++)
        {
            if (ans[i] > 2e8)
                cout << -1 << endl;
            else
                cout << ans[i] << endl;
        }
    }
    void solve()
    {
        input();
        ///compress_data();
        answer_queries();
    }
        
    void speed()
    {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout.tie(NULL);
    }
    int main()
    {
        
        speed();
        solve();
        return 0;
    }
        
    /**
    2 1 2
    3 1 1 3
    5 1 3 4
    3 3
    3 4
        
        
        
        
    4 2 4
    3 1 1 10
    9 2 2 4
    7 2 5 7
    4 1 8 10
    5 3
    5 6
    5 9
    1 10
        
    2 1 3
    1 1 1 4
    1 1 2 6
    1 3
    1 5
    1 7
        
    1 1 1
    100000000 1 1 1
    1 1
        
        
        
    */

Compilation message

new_home.cpp: In function 'void add_event(int, int, int)':
new_home.cpp:168:17: warning: unused variable 'mid' [-Wunused-variable]
  168 |             int mid = (cor + aft) / 2;
      |                 ^~~
new_home.cpp:177:17: warning: unused variable 'mid' [-Wunused-variable]
  177 |             int mid = (bef + cor) / 2;
      |                 ^~~
new_home.cpp:189:17: warning: unused variable 'mid_left' [-Wunused-variable]
  189 |             int mid_left = (bef + cor) / 2;
      |                 ^~~~~~~~
new_home.cpp:192:17: warning: unused variable 'mid_right' [-Wunused-variable]
  192 |             int mid_right = (cor + aft) / 2;
      |                 ^~~~~~~~~
new_home.cpp: In function 'void remove_event(int, int, int)':
new_home.cpp:244:17: warning: unused variable 'mid' [-Wunused-variable]
  244 |             int mid = (bef + aft) / 2;
      |                 ^~~
new_home.cpp: In function 'void answer_queries()':
new_home.cpp:340:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  340 |         for (int i = 1; i < dat.size(); i ++)
      |                         ~~^~~~~~~~~~~~
new_home.cpp:430:35: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  430 |                 while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                       ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 36 ms 174644 KB Output is correct
2 Correct 36 ms 174756 KB Output is correct
3 Correct 36 ms 174872 KB Output is correct
4 Correct 37 ms 174888 KB Output is correct
5 Correct 37 ms 174932 KB Output is correct
6 Correct 38 ms 175232 KB Output is correct
7 Correct 38 ms 175448 KB Output is correct
8 Correct 41 ms 175464 KB Output is correct
9 Correct 38 ms 175448 KB Output is correct
10 Correct 38 ms 175452 KB Output is correct
11 Correct 37 ms 175184 KB Output is correct
12 Correct 38 ms 175192 KB Output is correct
13 Correct 39 ms 174940 KB Output is correct
14 Correct 37 ms 174928 KB Output is correct
15 Correct 38 ms 175196 KB Output is correct
16 Correct 37 ms 175440 KB Output is correct
17 Correct 37 ms 175184 KB Output is correct
18 Correct 42 ms 175288 KB Output is correct
19 Correct 38 ms 175444 KB Output is correct
20 Correct 38 ms 175156 KB Output is correct
21 Correct 37 ms 175196 KB Output is correct
22 Correct 37 ms 175444 KB Output is correct
23 Correct 39 ms 175440 KB Output is correct
24 Correct 38 ms 175308 KB Output is correct
25 Correct 37 ms 175196 KB Output is correct
26 Correct 39 ms 175308 KB Output is correct
27 Correct 36 ms 174940 KB Output is correct
28 Correct 37 ms 175188 KB Output is correct
29 Correct 37 ms 175188 KB Output is correct
30 Correct 37 ms 174940 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 36 ms 174644 KB Output is correct
2 Correct 36 ms 174756 KB Output is correct
3 Correct 36 ms 174872 KB Output is correct
4 Correct 37 ms 174888 KB Output is correct
5 Correct 37 ms 174932 KB Output is correct
6 Correct 38 ms 175232 KB Output is correct
7 Correct 38 ms 175448 KB Output is correct
8 Correct 41 ms 175464 KB Output is correct
9 Correct 38 ms 175448 KB Output is correct
10 Correct 38 ms 175452 KB Output is correct
11 Correct 37 ms 175184 KB Output is correct
12 Correct 38 ms 175192 KB Output is correct
13 Correct 39 ms 174940 KB Output is correct
14 Correct 37 ms 174928 KB Output is correct
15 Correct 38 ms 175196 KB Output is correct
16 Correct 37 ms 175440 KB Output is correct
17 Correct 37 ms 175184 KB Output is correct
18 Correct 42 ms 175288 KB Output is correct
19 Correct 38 ms 175444 KB Output is correct
20 Correct 38 ms 175156 KB Output is correct
21 Correct 37 ms 175196 KB Output is correct
22 Correct 37 ms 175444 KB Output is correct
23 Correct 39 ms 175440 KB Output is correct
24 Correct 38 ms 175308 KB Output is correct
25 Correct 37 ms 175196 KB Output is correct
26 Correct 39 ms 175308 KB Output is correct
27 Correct 36 ms 174940 KB Output is correct
28 Correct 37 ms 175188 KB Output is correct
29 Correct 37 ms 175188 KB Output is correct
30 Correct 37 ms 174940 KB Output is correct
31 Correct 880 ms 316036 KB Output is correct
32 Correct 66 ms 178376 KB Output is correct
33 Correct 804 ms 320192 KB Output is correct
34 Correct 801 ms 318272 KB Output is correct
35 Correct 843 ms 316400 KB Output is correct
36 Correct 840 ms 318468 KB Output is correct
37 Correct 618 ms 303132 KB Output is correct
38 Correct 626 ms 302780 KB Output is correct
39 Correct 538 ms 279200 KB Output is correct
40 Correct 534 ms 282536 KB Output is correct
41 Correct 629 ms 269300 KB Output is correct
42 Correct 635 ms 271744 KB Output is correct
43 Correct 61 ms 179032 KB Output is correct
44 Correct 636 ms 267564 KB Output is correct
45 Correct 581 ms 258424 KB Output is correct
46 Correct 457 ms 241012 KB Output is correct
47 Correct 361 ms 239116 KB Output is correct
48 Correct 326 ms 234816 KB Output is correct
49 Correct 479 ms 247376 KB Output is correct
50 Correct 473 ms 264548 KB Output is correct
51 Correct 383 ms 242248 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1903 ms 794080 KB Output is correct
2 Correct 1873 ms 776388 KB Output is correct
3 Correct 2106 ms 915524 KB Output is correct
4 Correct 2080 ms 845268 KB Output is correct
5 Correct 1784 ms 796292 KB Output is correct
6 Correct 1800 ms 802344 KB Output is correct
7 Correct 2069 ms 965860 KB Output is correct
8 Correct 2005 ms 840048 KB Output is correct
9 Correct 2076 ms 783936 KB Output is correct
10 Correct 2066 ms 792744 KB Output is correct
11 Correct 1669 ms 822092 KB Output is correct
12 Correct 1863 ms 781300 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 5745 ms 1048576 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 36 ms 174644 KB Output is correct
2 Correct 36 ms 174756 KB Output is correct
3 Correct 36 ms 174872 KB Output is correct
4 Correct 37 ms 174888 KB Output is correct
5 Correct 37 ms 174932 KB Output is correct
6 Correct 38 ms 175232 KB Output is correct
7 Correct 38 ms 175448 KB Output is correct
8 Correct 41 ms 175464 KB Output is correct
9 Correct 38 ms 175448 KB Output is correct
10 Correct 38 ms 175452 KB Output is correct
11 Correct 37 ms 175184 KB Output is correct
12 Correct 38 ms 175192 KB Output is correct
13 Correct 39 ms 174940 KB Output is correct
14 Correct 37 ms 174928 KB Output is correct
15 Correct 38 ms 175196 KB Output is correct
16 Correct 37 ms 175440 KB Output is correct
17 Correct 37 ms 175184 KB Output is correct
18 Correct 42 ms 175288 KB Output is correct
19 Correct 38 ms 175444 KB Output is correct
20 Correct 38 ms 175156 KB Output is correct
21 Correct 37 ms 175196 KB Output is correct
22 Correct 37 ms 175444 KB Output is correct
23 Correct 39 ms 175440 KB Output is correct
24 Correct 38 ms 175308 KB Output is correct
25 Correct 37 ms 175196 KB Output is correct
26 Correct 39 ms 175308 KB Output is correct
27 Correct 36 ms 174940 KB Output is correct
28 Correct 37 ms 175188 KB Output is correct
29 Correct 37 ms 175188 KB Output is correct
30 Correct 37 ms 174940 KB Output is correct
31 Correct 880 ms 316036 KB Output is correct
32 Correct 66 ms 178376 KB Output is correct
33 Correct 804 ms 320192 KB Output is correct
34 Correct 801 ms 318272 KB Output is correct
35 Correct 843 ms 316400 KB Output is correct
36 Correct 840 ms 318468 KB Output is correct
37 Correct 618 ms 303132 KB Output is correct
38 Correct 626 ms 302780 KB Output is correct
39 Correct 538 ms 279200 KB Output is correct
40 Correct 534 ms 282536 KB Output is correct
41 Correct 629 ms 269300 KB Output is correct
42 Correct 635 ms 271744 KB Output is correct
43 Correct 61 ms 179032 KB Output is correct
44 Correct 636 ms 267564 KB Output is correct
45 Correct 581 ms 258424 KB Output is correct
46 Correct 457 ms 241012 KB Output is correct
47 Correct 361 ms 239116 KB Output is correct
48 Correct 326 ms 234816 KB Output is correct
49 Correct 479 ms 247376 KB Output is correct
50 Correct 473 ms 264548 KB Output is correct
51 Correct 383 ms 242248 KB Output is correct
52 Correct 661 ms 326576 KB Output is correct
53 Correct 619 ms 329068 KB Output is correct
54 Correct 781 ms 312656 KB Output is correct
55 Correct 618 ms 291960 KB Output is correct
56 Correct 576 ms 301428 KB Output is correct
57 Correct 614 ms 276084 KB Output is correct
58 Correct 628 ms 295836 KB Output is correct
59 Correct 644 ms 304036 KB Output is correct
60 Correct 654 ms 279468 KB Output is correct
61 Correct 199 ms 223780 KB Output is correct
62 Correct 682 ms 336908 KB Output is correct
63 Correct 651 ms 311736 KB Output is correct
64 Correct 694 ms 308916 KB Output is correct
65 Correct 676 ms 295980 KB Output is correct
66 Correct 623 ms 277008 KB Output is correct
67 Correct 151 ms 202688 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 36 ms 174644 KB Output is correct
2 Correct 36 ms 174756 KB Output is correct
3 Correct 36 ms 174872 KB Output is correct
4 Correct 37 ms 174888 KB Output is correct
5 Correct 37 ms 174932 KB Output is correct
6 Correct 38 ms 175232 KB Output is correct
7 Correct 38 ms 175448 KB Output is correct
8 Correct 41 ms 175464 KB Output is correct
9 Correct 38 ms 175448 KB Output is correct
10 Correct 38 ms 175452 KB Output is correct
11 Correct 37 ms 175184 KB Output is correct
12 Correct 38 ms 175192 KB Output is correct
13 Correct 39 ms 174940 KB Output is correct
14 Correct 37 ms 174928 KB Output is correct
15 Correct 38 ms 175196 KB Output is correct
16 Correct 37 ms 175440 KB Output is correct
17 Correct 37 ms 175184 KB Output is correct
18 Correct 42 ms 175288 KB Output is correct
19 Correct 38 ms 175444 KB Output is correct
20 Correct 38 ms 175156 KB Output is correct
21 Correct 37 ms 175196 KB Output is correct
22 Correct 37 ms 175444 KB Output is correct
23 Correct 39 ms 175440 KB Output is correct
24 Correct 38 ms 175308 KB Output is correct
25 Correct 37 ms 175196 KB Output is correct
26 Correct 39 ms 175308 KB Output is correct
27 Correct 36 ms 174940 KB Output is correct
28 Correct 37 ms 175188 KB Output is correct
29 Correct 37 ms 175188 KB Output is correct
30 Correct 37 ms 174940 KB Output is correct
31 Correct 880 ms 316036 KB Output is correct
32 Correct 66 ms 178376 KB Output is correct
33 Correct 804 ms 320192 KB Output is correct
34 Correct 801 ms 318272 KB Output is correct
35 Correct 843 ms 316400 KB Output is correct
36 Correct 840 ms 318468 KB Output is correct
37 Correct 618 ms 303132 KB Output is correct
38 Correct 626 ms 302780 KB Output is correct
39 Correct 538 ms 279200 KB Output is correct
40 Correct 534 ms 282536 KB Output is correct
41 Correct 629 ms 269300 KB Output is correct
42 Correct 635 ms 271744 KB Output is correct
43 Correct 61 ms 179032 KB Output is correct
44 Correct 636 ms 267564 KB Output is correct
45 Correct 581 ms 258424 KB Output is correct
46 Correct 457 ms 241012 KB Output is correct
47 Correct 361 ms 239116 KB Output is correct
48 Correct 326 ms 234816 KB Output is correct
49 Correct 479 ms 247376 KB Output is correct
50 Correct 473 ms 264548 KB Output is correct
51 Correct 383 ms 242248 KB Output is correct
52 Correct 1903 ms 794080 KB Output is correct
53 Correct 1873 ms 776388 KB Output is correct
54 Correct 2106 ms 915524 KB Output is correct
55 Correct 2080 ms 845268 KB Output is correct
56 Correct 1784 ms 796292 KB Output is correct
57 Correct 1800 ms 802344 KB Output is correct
58 Correct 2069 ms 965860 KB Output is correct
59 Correct 2005 ms 840048 KB Output is correct
60 Correct 2076 ms 783936 KB Output is correct
61 Correct 2066 ms 792744 KB Output is correct
62 Correct 1669 ms 822092 KB Output is correct
63 Correct 1863 ms 781300 KB Output is correct
64 Execution timed out 5745 ms 1048576 KB Time limit exceeded
65 Halted 0 ms 0 KB -