답안 #864969

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
864969 2023-10-23T20:44:08 Z danikoynov 새 집 (APIO18_new_home) C++14
57 / 100
4627 ms 1048576 KB
    #include<bits/stdc++.h>
    #define endl '\n'
        
    using namespace std;
    typedef long long ll;
        
    const int maxn = 6e5 + 10, inf = 1e9;
        
    struct store
    {
        int x, t, a, b;
    }s[maxn];
        
    struct query
    {
        int l, y, idx;
    }task[maxn];
        
    int n, k, q;
    int readInt () {
        bool minus = false;
        int result = 0;
        char ch;
        ch = getchar();
        while (true) {
            if (ch == '-') break;
            if (ch >= '0' && ch <= '9') break;
            ch = getchar();
        }
        if (ch == '-') minus = true; else result = ch-'0';
        while (true) {
            ch = getchar();
            if (ch < '0' || ch > '9') break;
            result = result*10 + (ch - '0');
        }
        if (minus)
            return -result;
        else
            return result;
    }
    void input()
    {
        n = readInt();
        k = readInt();
        q = readInt();
        ///cin >> n >> k >> q;
        for (int i = 1; i <= n; i ++)
        {
            s[i].x = readInt();
            s[i].t = readInt();
            s[i].a = readInt();
            s[i].b = readInt();
            ///        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
        }
        
        for (int i = 1; i <= q; i ++)
        {
                task[i].l = readInt();
                task[i].y = readInt();
                task[i].idx = i;
            ///cin >> task[i].l >> task[i].y, task[i].idx = i;
        }
    }
        
    unordered_map < int, int > rev;
    int dif, back_to[2 * maxn];
        
     
     
        
    bool cmp_query(query &t1, query &t2)
    {
        return t1.l < t2.l;
    }
        
    struct event
    {
        int type, cor, add, arrive;
        
        event(int _type, int _cor, int _add, int _arrive)
        {
            type = _type;
            cor = _cor;
            add = _add;
            arrive = _arrive;
        }
    };
        
    bool cmp_event(event &e1, event &e2)
    {
        if (e1.arrive != e2.arrive)
            return e1.arrive < e2.arrive;
        
        if (e1.add != e2.add)
            return e1.add < e2.add;
        
        return e1.cor < e2.cor; /// could have dublicates
    }
        
     
        
    multiset < int > act[maxn];
    
    struct interval_ray
    {
        int s, e;
        pair < int, int > ray;
        
        interval_ray(int _s, int _e, pair < int, int > _ray)
        {
            s = _s;
            e = _e;
            ray = _ray;
        }
     
        interval_ray(int &_s, int &_e, pair < int, int > &_ray)
        {
            s = _s;
            e = _e;
            ray = _ray;
        }
    };
     
    vector < interval_ray > seg_left, seg_right;
        struct hash_pair {
        template <class T1, class T2>
        long long operator()(const pair<T1, T2>& p) const
        {
            auto hash1 = hash<T1>{}(p.first);
            auto hash2 = hash<T2>{}(p.second);
            return (hash1 << 16) + hash2;             
        }
    };
    
    unordered_map < int, int > cnt[maxn];
    unordered_map < int, int > ray_right[maxn], ray_left[maxn];
    vector < int > dat;
    void make_left_segment(int start, int finish, int timer, int type)
    {
        ///cout << "left " << start << " " << finish << " " << timer << endl;
        seg_left.push_back(interval_ray(ray_left[type][start], timer - 1, {start, finish}));
        ray_left[type][start] = 0;
    }
        
    void make_right_segment(int start, int finish, int timer, int type)
    {
        seg_right.push_back(interval_ray(ray_right[type][start], timer - 1, {start, finish}));
        ray_right[type][start] = 0;
    }
        
    void add_event(int type, int cor, int timer)
    {
        cnt[type][cor] ++;
        if (cnt[type][cor] > 1)
            return;

        multiset < int > :: iterator it = act[type].upper_bound(cor);
        int aft = *it;
        int bef = *prev(it);
        
        if (bef == -inf && aft == inf)
        {
            
            make_right_segment(-inf, inf, timer, type);
            ray_left[type][cor] = timer;
            ray_right[type][cor] = timer;
        }
        else
        if (bef == - inf)
        {
            make_left_segment(aft, -inf, timer, type);
            int mid = (cor + aft) / 2;
            ray_right[type][cor] = timer;
            ray_left[type][aft] = timer;
            ray_left[type][cor] = timer;
        }
        else
        if (aft == inf)
        {
            make_right_segment(bef, inf, timer, type);
            int mid = (bef + cor) / 2;
            ray_left[type][cor] = timer;
            ray_right[type][bef] = timer;
            ray_right[type][cor] = timer;
        }
        else
        {
            int mid = (bef + aft) / 2;
            make_right_segment(bef, mid, timer, type);
            make_left_segment(aft, mid + 1, timer, type);
            assert(ray_right[type][bef] == 0);
            assert(ray_left[type][cor] == 0);
            int mid_left = (bef + cor) / 2;
            ray_right[type][bef] = timer;
            ray_left[type][cor] = timer;
            int mid_right = (cor + aft) / 2;
            ray_right[type][cor] = timer;
            ray_left[type][aft] = timer;
        }
        
        act[type].insert(cor);
    }
        
        
    void remove_event(int type, int cor, int timer)
    {
        cnt[type][cor] --;
        if (cnt[type][cor] > 0)
            return;
        multiset < int > :: iterator it = act[type].find(cor);
        int aft = *next(it);
        int bef = *prev(it);
        
        if (bef == -inf && aft == inf)
        {
            ///cout << "reverse " << timer << endl;
        
            make_left_segment(cor, -inf, timer, type);
            make_right_segment(cor, +inf, timer, type);
            ray_right[type][-inf] = timer;
        
        }
        else
        if (bef == -inf)
        {
        
            ///cout << "step " << timer << endl;
            make_left_segment(cor, -inf, timer, type);
            int mid = (cor + aft) / 2;
            make_right_segment(cor, mid, timer, type);
            make_left_segment(aft, mid + 1, timer, type);
            ray_left[type][aft] = timer;
        
        
        }
        else
        if (aft == inf)
        {
        
            make_right_segment(cor, inf, timer, type);
            int mid = (bef + cor) / 2;
            make_left_segment(cor, mid + 1, timer, type);
            make_right_segment(bef, mid, timer, type);
            ray_right[type][bef] = timer;
        }
        else
        {
            int mid = (bef + aft) / 2;
            ///assert((ray_right[type][{bef, mid}]) == 0);
            ///assert((ray_left[type][{aft, mid + 1}]) == 0);
        
            int mid_left = (bef + cor) / 2;
            make_right_segment(bef, mid_left, timer, type);
            make_left_segment(cor, mid_left + 1, timer, type);
            int mid_right = (aft + cor) / 2;
            make_right_segment(cor, mid_right, timer, type);
            make_left_segment(aft, mid_right + 1, timer, type);
        
                    ray_right[type][bef] = timer;
            ray_left[type][aft] = timer;
        
        }
        
        act[type].erase(it);
    }
        
    int ans[maxn];
        
    vector < interval_ray > tree_left[maxn * 4], tree_right[maxn * 4];
    int pt_lf[4 * maxn], bs_lf[4 * maxn];
    int pt_rf[4 * maxn], bs_rf[4 * maxn];
        
    bool cmp_ray_second(interval_ray r1, interval_ray r2)
    {
        return r1.ray.second < r2.ray.second;
    }
    void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
    {
        if (left > qright || right < qleft)
            return;
        
        if (left >= qleft && right <= qright)
        {
            if (type == -1)
                tree_left[root].push_back(ray);
            else
                tree_right[root].push_back(ray);
            return;
        }
        
        int mid = (left + right) / 2;
        update_range(root * 2, left, mid, qleft, qright, ray, type);
        update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);
        
    }
        
    unordered_map < int, int > event_times;
        
    void answer_queries()
    {
        sort(task + 1, task + q + 1, cmp_query);
        
        vector < event > events;
        for (int i = 1; i <= n; i ++)
        {
            events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
            events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
        }
        
        sort(events.begin(), events.end(), cmp_event);
        
        for (int i = 1; i <= k; i ++)
        {
            act[i].insert(-inf);
            act[i].insert(inf);
            ray_right[i][-inf] = 1;
        }
        
        
        int cnt = 0;
        dat.push_back(1);
        dat.push_back(0);
        
        for (event cur : events)
        {
            ///dat.push_back(cur.arrive - 1);
            dat.push_back(cur.arrive);
            ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
            if (cur.add == 1)
                add_event(cur.type, cur.cor, cur.arrive);
            else
                remove_event(cur.type, cur.cor, cur.arrive);
        }
        
        dat.push_back(inf - 1);
        dat.push_back(inf);
        
        for (int i = 1; i <= q; i ++)
            dat.push_back(task[i].y);
        
        sort(dat.begin(), dat.end());
        cnt ++;
        event_times[dat[0]] = cnt;
        for (int i = 1; i < dat.size(); i ++)
        {
            if (dat[i] == dat[i - 1])
                continue;
            cnt ++;
            event_times[dat[i]] = cnt;
        }
        
        
        for (int i = 1; i <= k; i ++)
            for (auto it : ray_right[i])
            {
                ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
                if (it.second != 0)
                    make_right_segment(it.first, inf, inf, i);
            }
        
        
        sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
        sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
        for (interval_ray cur : seg_left)
        {
            //assert(event_times[cur.e + 1] != 0);
            update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, -1);
        ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
        }
        
        for (interval_ray cur : seg_right)
        {
            //assert(event_times[cur.e + 1] != 0);
            update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, 1);
            ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
        }
        
        
        for (int i = 1; i <= 4 * cnt; i ++)
        {
            pt_rf[i] = (int)(tree_right[i].size()) - 1;
            bs_rf[i] = inf;
        
            pt_lf[i] = 0;
            bs_lf[i] = -inf;
            ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
            ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
        }
        
        for (int i = q; i > 0; i --)
        {
            int longest = 0;
            int pos = event_times[task[i].y];
            int root = 1, left = 1, right = cnt;
        
            while(true)
            {
        
                while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
                {
                    bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                    pt_rf[root] --;
                }
                longest = max(longest, task[i].l - bs_rf[root]);
        
        
                if (left == right)
                    break;
        
                int mid = (left + right) / 2;
                if (pos <= mid)
                {
                    root *= 2;
                    right = mid;
                }
                else
                {
                    root = root * 2 + 1;
                    left = mid + 1;
                }
            }
        
            ans[task[i].idx] = max(ans[task[i].idx], longest);
        }
        
        for (int i = 1; i <= q; i ++)
        {
            int longest = 0;
            int pos = event_times[task[i].y];
            int root = 1, left = 1, right = cnt;
            while(true)
            {
                ///cout << "step " << root << " " << left << " " << right << endl;
                while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
                {
                    bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                    pt_lf[root] ++;
                }
                longest = max(longest, bs_lf[root] - task[i].l);
                /**for (interval_ray cur : tree_left[root])
                {
                    if (task[i].l >= cur.ray.second)
                        longest = max(longest, cur.ray.first - task[i].l);
                }*/
        
        
                if (left == right)
                    break;
        
                int mid = (left + right) / 2;
                if (pos <= mid)
                {
                    root *= 2;
                    right = mid;
                }
                else
                {
                    root = root * 2 + 1;
                    left = mid + 1;
                }
            }
        
            ans[task[i].idx] = max(ans[task[i].idx], longest);
        }
        
        for (int i = 1; i <= q; i ++)
        {
            if (ans[i] > 2e8)
                cout << -1 << endl;
            else
                cout << ans[i] << endl;
        }
    }
    void solve()
    {
        input();
        ///compress_data();
        answer_queries();
    }
        
    void speed()
    {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout.tie(NULL);
    }
    int main()
    {
        
        speed();
        solve();
        return 0;
    }
        
    /**
    2 1 2
    3 1 1 3
    5 1 3 4
    3 3
    3 4
        
        
        
        
    4 2 4
    3 1 1 10
    9 2 2 4
    7 2 5 7
    4 1 8 10
    5 3
    5 6
    5 9
    1 10
        
    2 1 3
    1 1 1 4
    1 1 2 6
    1 3
    1 5
    1 7
        
    1 1 1
    100000000 1 1 1
    1 1
        
        
        
    */

Compilation message

new_home.cpp: In function 'void add_event(int, int, int)':
new_home.cpp:172:17: warning: unused variable 'mid' [-Wunused-variable]
  172 |             int mid = (cor + aft) / 2;
      |                 ^~~
new_home.cpp:181:17: warning: unused variable 'mid' [-Wunused-variable]
  181 |             int mid = (bef + cor) / 2;
      |                 ^~~
new_home.cpp:193:17: warning: unused variable 'mid_left' [-Wunused-variable]
  193 |             int mid_left = (bef + cor) / 2;
      |                 ^~~~~~~~
new_home.cpp:196:17: warning: unused variable 'mid_right' [-Wunused-variable]
  196 |             int mid_right = (cor + aft) / 2;
      |                 ^~~~~~~~~
new_home.cpp: In function 'void remove_event(int, int, int)':
new_home.cpp:248:17: warning: unused variable 'mid' [-Wunused-variable]
  248 |             int mid = (bef + aft) / 2;
      |                 ^~~
new_home.cpp: In function 'void answer_queries()':
new_home.cpp:344:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  344 |         for (int i = 1; i < dat.size(); i ++)
      |                         ~~^~~~~~~~~~~~
new_home.cpp:434:35: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  434 |                 while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                       ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 54 ms 254800 KB Output is correct
2 Correct 53 ms 254804 KB Output is correct
3 Correct 57 ms 254900 KB Output is correct
4 Correct 52 ms 254668 KB Output is correct
5 Correct 54 ms 255100 KB Output is correct
6 Correct 54 ms 255412 KB Output is correct
7 Correct 55 ms 255572 KB Output is correct
8 Correct 55 ms 255492 KB Output is correct
9 Correct 54 ms 255584 KB Output is correct
10 Correct 54 ms 255464 KB Output is correct
11 Correct 54 ms 255060 KB Output is correct
12 Correct 53 ms 255056 KB Output is correct
13 Correct 53 ms 255056 KB Output is correct
14 Correct 53 ms 255056 KB Output is correct
15 Correct 55 ms 255244 KB Output is correct
16 Correct 55 ms 255328 KB Output is correct
17 Correct 55 ms 255312 KB Output is correct
18 Correct 54 ms 255316 KB Output is correct
19 Correct 54 ms 255488 KB Output is correct
20 Correct 54 ms 255164 KB Output is correct
21 Correct 53 ms 255068 KB Output is correct
22 Correct 54 ms 255568 KB Output is correct
23 Correct 54 ms 255316 KB Output is correct
24 Correct 55 ms 255316 KB Output is correct
25 Correct 57 ms 255312 KB Output is correct
26 Correct 54 ms 255248 KB Output is correct
27 Correct 53 ms 255040 KB Output is correct
28 Correct 56 ms 255072 KB Output is correct
29 Correct 55 ms 255220 KB Output is correct
30 Correct 55 ms 255116 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 54 ms 254800 KB Output is correct
2 Correct 53 ms 254804 KB Output is correct
3 Correct 57 ms 254900 KB Output is correct
4 Correct 52 ms 254668 KB Output is correct
5 Correct 54 ms 255100 KB Output is correct
6 Correct 54 ms 255412 KB Output is correct
7 Correct 55 ms 255572 KB Output is correct
8 Correct 55 ms 255492 KB Output is correct
9 Correct 54 ms 255584 KB Output is correct
10 Correct 54 ms 255464 KB Output is correct
11 Correct 54 ms 255060 KB Output is correct
12 Correct 53 ms 255056 KB Output is correct
13 Correct 53 ms 255056 KB Output is correct
14 Correct 53 ms 255056 KB Output is correct
15 Correct 55 ms 255244 KB Output is correct
16 Correct 55 ms 255328 KB Output is correct
17 Correct 55 ms 255312 KB Output is correct
18 Correct 54 ms 255316 KB Output is correct
19 Correct 54 ms 255488 KB Output is correct
20 Correct 54 ms 255164 KB Output is correct
21 Correct 53 ms 255068 KB Output is correct
22 Correct 54 ms 255568 KB Output is correct
23 Correct 54 ms 255316 KB Output is correct
24 Correct 55 ms 255316 KB Output is correct
25 Correct 57 ms 255312 KB Output is correct
26 Correct 54 ms 255248 KB Output is correct
27 Correct 53 ms 255040 KB Output is correct
28 Correct 56 ms 255072 KB Output is correct
29 Correct 55 ms 255220 KB Output is correct
30 Correct 55 ms 255116 KB Output is correct
31 Correct 923 ms 396248 KB Output is correct
32 Correct 84 ms 260580 KB Output is correct
33 Correct 850 ms 397012 KB Output is correct
34 Correct 879 ms 394932 KB Output is correct
35 Correct 921 ms 396448 KB Output is correct
36 Correct 939 ms 395720 KB Output is correct
37 Correct 656 ms 382880 KB Output is correct
38 Correct 673 ms 382508 KB Output is correct
39 Correct 554 ms 356380 KB Output is correct
40 Correct 602 ms 360636 KB Output is correct
41 Correct 643 ms 346744 KB Output is correct
42 Correct 653 ms 349860 KB Output is correct
43 Correct 79 ms 261328 KB Output is correct
44 Correct 631 ms 345392 KB Output is correct
45 Correct 615 ms 336584 KB Output is correct
46 Correct 503 ms 318840 KB Output is correct
47 Correct 365 ms 314828 KB Output is correct
48 Correct 363 ms 310652 KB Output is correct
49 Correct 418 ms 325116 KB Output is correct
50 Correct 507 ms 342592 KB Output is correct
51 Correct 408 ms 318052 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1948 ms 907764 KB Output is correct
2 Correct 1945 ms 857176 KB Output is correct
3 Correct 2214 ms 1025836 KB Output is correct
4 Correct 2087 ms 952420 KB Output is correct
5 Correct 1834 ms 865452 KB Output is correct
6 Correct 1894 ms 890016 KB Output is correct
7 Correct 2166 ms 1043500 KB Output is correct
8 Correct 2105 ms 931652 KB Output is correct
9 Correct 2103 ms 863680 KB Output is correct
10 Correct 2095 ms 917680 KB Output is correct
11 Correct 1736 ms 869620 KB Output is correct
12 Correct 1929 ms 858800 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4627 ms 955964 KB Output is correct
2 Correct 191 ms 283308 KB Output is correct
3 Correct 4146 ms 978348 KB Output is correct
4 Runtime error 2243 ms 1048576 KB Execution killed with signal 9
5 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 54 ms 254800 KB Output is correct
2 Correct 53 ms 254804 KB Output is correct
3 Correct 57 ms 254900 KB Output is correct
4 Correct 52 ms 254668 KB Output is correct
5 Correct 54 ms 255100 KB Output is correct
6 Correct 54 ms 255412 KB Output is correct
7 Correct 55 ms 255572 KB Output is correct
8 Correct 55 ms 255492 KB Output is correct
9 Correct 54 ms 255584 KB Output is correct
10 Correct 54 ms 255464 KB Output is correct
11 Correct 54 ms 255060 KB Output is correct
12 Correct 53 ms 255056 KB Output is correct
13 Correct 53 ms 255056 KB Output is correct
14 Correct 53 ms 255056 KB Output is correct
15 Correct 55 ms 255244 KB Output is correct
16 Correct 55 ms 255328 KB Output is correct
17 Correct 55 ms 255312 KB Output is correct
18 Correct 54 ms 255316 KB Output is correct
19 Correct 54 ms 255488 KB Output is correct
20 Correct 54 ms 255164 KB Output is correct
21 Correct 53 ms 255068 KB Output is correct
22 Correct 54 ms 255568 KB Output is correct
23 Correct 54 ms 255316 KB Output is correct
24 Correct 55 ms 255316 KB Output is correct
25 Correct 57 ms 255312 KB Output is correct
26 Correct 54 ms 255248 KB Output is correct
27 Correct 53 ms 255040 KB Output is correct
28 Correct 56 ms 255072 KB Output is correct
29 Correct 55 ms 255220 KB Output is correct
30 Correct 55 ms 255116 KB Output is correct
31 Correct 923 ms 396248 KB Output is correct
32 Correct 84 ms 260580 KB Output is correct
33 Correct 850 ms 397012 KB Output is correct
34 Correct 879 ms 394932 KB Output is correct
35 Correct 921 ms 396448 KB Output is correct
36 Correct 939 ms 395720 KB Output is correct
37 Correct 656 ms 382880 KB Output is correct
38 Correct 673 ms 382508 KB Output is correct
39 Correct 554 ms 356380 KB Output is correct
40 Correct 602 ms 360636 KB Output is correct
41 Correct 643 ms 346744 KB Output is correct
42 Correct 653 ms 349860 KB Output is correct
43 Correct 79 ms 261328 KB Output is correct
44 Correct 631 ms 345392 KB Output is correct
45 Correct 615 ms 336584 KB Output is correct
46 Correct 503 ms 318840 KB Output is correct
47 Correct 365 ms 314828 KB Output is correct
48 Correct 363 ms 310652 KB Output is correct
49 Correct 418 ms 325116 KB Output is correct
50 Correct 507 ms 342592 KB Output is correct
51 Correct 408 ms 318052 KB Output is correct
52 Correct 707 ms 404508 KB Output is correct
53 Correct 674 ms 406400 KB Output is correct
54 Correct 805 ms 391032 KB Output is correct
55 Correct 621 ms 369012 KB Output is correct
56 Correct 616 ms 379020 KB Output is correct
57 Correct 644 ms 354348 KB Output is correct
58 Correct 656 ms 372856 KB Output is correct
59 Correct 660 ms 383092 KB Output is correct
60 Correct 639 ms 356484 KB Output is correct
61 Correct 238 ms 305860 KB Output is correct
62 Correct 700 ms 415088 KB Output is correct
63 Correct 703 ms 388552 KB Output is correct
64 Correct 710 ms 386692 KB Output is correct
65 Correct 688 ms 373892 KB Output is correct
66 Correct 672 ms 355024 KB Output is correct
67 Correct 180 ms 283840 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 54 ms 254800 KB Output is correct
2 Correct 53 ms 254804 KB Output is correct
3 Correct 57 ms 254900 KB Output is correct
4 Correct 52 ms 254668 KB Output is correct
5 Correct 54 ms 255100 KB Output is correct
6 Correct 54 ms 255412 KB Output is correct
7 Correct 55 ms 255572 KB Output is correct
8 Correct 55 ms 255492 KB Output is correct
9 Correct 54 ms 255584 KB Output is correct
10 Correct 54 ms 255464 KB Output is correct
11 Correct 54 ms 255060 KB Output is correct
12 Correct 53 ms 255056 KB Output is correct
13 Correct 53 ms 255056 KB Output is correct
14 Correct 53 ms 255056 KB Output is correct
15 Correct 55 ms 255244 KB Output is correct
16 Correct 55 ms 255328 KB Output is correct
17 Correct 55 ms 255312 KB Output is correct
18 Correct 54 ms 255316 KB Output is correct
19 Correct 54 ms 255488 KB Output is correct
20 Correct 54 ms 255164 KB Output is correct
21 Correct 53 ms 255068 KB Output is correct
22 Correct 54 ms 255568 KB Output is correct
23 Correct 54 ms 255316 KB Output is correct
24 Correct 55 ms 255316 KB Output is correct
25 Correct 57 ms 255312 KB Output is correct
26 Correct 54 ms 255248 KB Output is correct
27 Correct 53 ms 255040 KB Output is correct
28 Correct 56 ms 255072 KB Output is correct
29 Correct 55 ms 255220 KB Output is correct
30 Correct 55 ms 255116 KB Output is correct
31 Correct 923 ms 396248 KB Output is correct
32 Correct 84 ms 260580 KB Output is correct
33 Correct 850 ms 397012 KB Output is correct
34 Correct 879 ms 394932 KB Output is correct
35 Correct 921 ms 396448 KB Output is correct
36 Correct 939 ms 395720 KB Output is correct
37 Correct 656 ms 382880 KB Output is correct
38 Correct 673 ms 382508 KB Output is correct
39 Correct 554 ms 356380 KB Output is correct
40 Correct 602 ms 360636 KB Output is correct
41 Correct 643 ms 346744 KB Output is correct
42 Correct 653 ms 349860 KB Output is correct
43 Correct 79 ms 261328 KB Output is correct
44 Correct 631 ms 345392 KB Output is correct
45 Correct 615 ms 336584 KB Output is correct
46 Correct 503 ms 318840 KB Output is correct
47 Correct 365 ms 314828 KB Output is correct
48 Correct 363 ms 310652 KB Output is correct
49 Correct 418 ms 325116 KB Output is correct
50 Correct 507 ms 342592 KB Output is correct
51 Correct 408 ms 318052 KB Output is correct
52 Correct 1948 ms 907764 KB Output is correct
53 Correct 1945 ms 857176 KB Output is correct
54 Correct 2214 ms 1025836 KB Output is correct
55 Correct 2087 ms 952420 KB Output is correct
56 Correct 1834 ms 865452 KB Output is correct
57 Correct 1894 ms 890016 KB Output is correct
58 Correct 2166 ms 1043500 KB Output is correct
59 Correct 2105 ms 931652 KB Output is correct
60 Correct 2103 ms 863680 KB Output is correct
61 Correct 2095 ms 917680 KB Output is correct
62 Correct 1736 ms 869620 KB Output is correct
63 Correct 1929 ms 858800 KB Output is correct
64 Correct 4627 ms 955964 KB Output is correct
65 Correct 191 ms 283308 KB Output is correct
66 Correct 4146 ms 978348 KB Output is correct
67 Runtime error 2243 ms 1048576 KB Execution killed with signal 9
68 Halted 0 ms 0 KB -