Submission #864957

# Submission time Handle Problem Language Result Execution time Memory
864957 2023-10-23T19:21:27 Z danikoynov New Home (APIO18_new_home) C++14
57 / 100
2196 ms 978884 KB
#include<bits/stdc++.h>
#define endl '\n'
    
using namespace std;
typedef long long ll;
    
const int maxn = 4e5 + 10, inf = 1e9;
    
struct store
{
    int x, t, a, b;
}s[maxn];
    
struct query
{
    int l, y, idx;
}task[maxn];
    
int n, k, q;
int readInt () {
    bool minus = false;
    int result = 0;
    char ch;
    ch = getchar();
    while (true) {
        if (ch == '-') break;
        if (ch >= '0' && ch <= '9') break;
        ch = getchar();
    }
    if (ch == '-') minus = true; else result = ch-'0';
    while (true) {
        ch = getchar();
        if (ch < '0' || ch > '9') break;
        result = result*10 + (ch - '0');
    }
    if (minus)
        return -result;
    else
        return result;
}
void input()
{
    n = readInt();
    k = readInt();
    q = readInt();
    ///cin >> n >> k >> q;
    for (int i = 1; i <= n; i ++)
    {
        s[i].x = readInt();
        s[i].t = readInt();
        s[i].a = readInt();
        s[i].b = readInt();
        ///        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
    }
    
    for (int i = 1; i <= q; i ++)
    {
            task[i].l = readInt();
            task[i].y = readInt();
            task[i].idx = i;
        ///cin >> task[i].l >> task[i].y, task[i].idx = i;
    }
}
    
unordered_map < int, int > rev;
int dif, back_to[2 * maxn];
    
 
 
    
bool cmp_query(query &t1, query &t2)
{
    return t1.l < t2.l;
}
    
struct event
{
    int type, cor, add, arrive;
    
    event(int _type, int _cor, int _add, int _arrive)
    {
        type = _type;
        cor = _cor;
        add = _add;
        arrive = _arrive;
    }
};
    
bool cmp_event(event &e1, event &e2)
{
    if (e1.arrive != e2.arrive)
        return e1.arrive < e2.arrive;
    
    if (e1.add != e2.add)
        return e1.add < e2.add;
    
    return e1.cor < e2.cor; /// could have dublicates
}
    

    
multiset < int > act[maxn];
    
struct interval_ray
{
    int s, e;
    pair < int, int > ray;
    
    interval_ray(int _s, int _e, pair < int, int > _ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }
 
    interval_ray(int &_s, int &_e, pair < int, int > &_ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }
};

vector < interval_ray > seg_left, seg_right;
    struct hash_pair {
    template <class T1, class T2>
    long long operator()(const pair<T1, T2>& p) const
    {
        auto hash1 = hash<T1>{}(p.first);
        auto hash2 = hash<T2>{}(p.second);
        return (hash1 << 16) + hash2;             
    }
};

unordered_map < pair < int, int >, int, hash_pair > ray_right[maxn], ray_left[maxn];
vector < int > dat;
void make_left_segment(int start, int finish, int timer, int type)
{
    ///cout << "left " << start << " " << finish << " " << timer << endl;
    seg_left.push_back(interval_ray(ray_left[type][{start, finish}], timer - 1, {start, finish}));
    ray_left[type][{start, finish}] = 0;
}
    
void make_right_segment(int start, int finish, int timer, int type)
{
    seg_right.push_back(interval_ray(ray_right[type][{start, finish}], timer - 1, {start, finish}));
    ray_right[type][{start, finish}] = 0;
}
    
void add_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].upper_bound(cor);
    int aft = *it;
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        
        make_right_segment(-inf, inf, timer, type);
        ray_left[type][{cor, -inf}] = timer;
        ray_right[type][{cor, +inf}] = timer;
    }
    else
    if (bef == - inf)
    {
        make_left_segment(aft, -inf, timer, type);
        int mid = (cor + aft) / 2;
        ray_right[type][{cor, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
        ray_left[type][{cor, -inf}] = timer;
    }
    else
    if (aft == inf)
    {
        make_right_segment(bef, inf, timer, type);
        int mid = (bef + cor) / 2;
        ray_left[type][{cor, mid + 1}] = timer;
        ray_right[type][{bef, mid}] = timer;
        ray_right[type][{cor, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        make_right_segment(bef, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
        int mid_left = (bef + cor) / 2;
        ray_right[type][{bef, mid_left}] = timer;
        ray_left[type][{cor, mid_left + 1}] = timer;
        int mid_right = (cor + aft) / 2;
        ray_right[type][{cor, mid_right}] = timer;
        ray_left[type][{aft, mid_right + 1}] = timer;
    }
    
    act[type].insert(cor);
}
    
    
void remove_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].find(cor);
    int aft = *next(it);
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        ///cout << "reverse " << timer << endl;
    
        make_left_segment(cor, -inf, timer, type);
        make_right_segment(cor, +inf, timer, type);
        ray_right[type][{-inf, inf}] = timer;
    
    }
    else
    if (bef == -inf)
    {
    
        ///cout << "step " << timer << endl;
        make_left_segment(cor, -inf, timer, type);
        int mid = (cor + aft) / 2;
        make_right_segment(cor, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
        ray_left[type][{aft, -inf}] = timer;
    
    
    }
    else
    if (aft == inf)
    {
    
        make_right_segment(cor, inf, timer, type);
        int mid = (bef + cor) / 2;
        make_left_segment(cor, mid + 1, timer, type);
        make_right_segment(bef, mid, timer, type);
        ray_right[type][{bef, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        ///assert((ray_right[type][{bef, mid}]) == 0);
        ///assert((ray_left[type][{aft, mid + 1}]) == 0);
    
        int mid_left = (bef + cor) / 2;
        make_right_segment(bef, mid_left, timer, type);
        make_left_segment(cor, mid_left + 1, timer, type);
        int mid_right = (aft + cor) / 2;
        make_right_segment(cor, mid_right, timer, type);
        make_left_segment(aft, mid_right + 1, timer, type);
    
                ray_right[type][{bef, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
    
    }
    
    act[type].erase(it);
}
    
int ans[maxn];
    
vector < interval_ray > tree_left[maxn * 4], tree_right[maxn * 4];
int pt_lf[4 * maxn], bs_lf[4 * maxn];
int pt_rf[4 * maxn], bs_rf[4 * maxn];
    
bool cmp_ray_second(interval_ray r1, interval_ray r2)
{
    return r1.ray.second < r2.ray.second;
}
void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
{
    if (left > qright || right < qleft)
        return;
    
    if (left >= qleft && right <= qright)
    {
        if (type == -1)
            tree_left[root].push_back(ray);
        else
            tree_right[root].push_back(ray);
        return;
    }
    
    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, ray, type);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);
    
}
    
unordered_map < int, int > event_times;
    
void answer_queries()
{
    sort(task + 1, task + q + 1, cmp_query);
    
    vector < event > events;
    for (int i = 1; i <= n; i ++)
    {
        events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
        events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
    }
    
    sort(events.begin(), events.end(), cmp_event);
    
    for (int i = 1; i <= k; i ++)
    {
        act[i].insert(-inf);
        act[i].insert(inf);
        ray_right[i][{-inf, inf}] = 1;
    }
    
    
    int cnt = 0;
    dat.push_back(1);
    dat.push_back(0);
    
    for (event cur : events)
    {
        ///dat.push_back(cur.arrive - 1);
        dat.push_back(cur.arrive);
        ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
        if (cur.add == 1)
            add_event(cur.type, cur.cor, cur.arrive);
        else
            remove_event(cur.type, cur.cor, cur.arrive);
    }
    
    dat.push_back(inf - 1);
    dat.push_back(inf);
    
    for (int i = 1; i <= q; i ++)
        dat.push_back(task[i].y);
    
    sort(dat.begin(), dat.end());
    cnt ++;
    event_times[dat[0]] = cnt;
    for (int i = 1; i < dat.size(); i ++)
    {
        if (dat[i] == dat[i - 1])
            continue;
        cnt ++;
        event_times[dat[i]] = cnt;
    }
    
    
    for (int i = 1; i <= k; i ++)
        for (auto it : ray_right[i])
        {
            ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
            if (it.second != 0)
                make_right_segment(it.first.first, it.first.second, inf, i);
        }
    
    
    for (int i = 1; i <= k; i ++)
        for (auto it : ray_left[i])
        {
            if (it.second != 0)
            {
            ///cout << "here " << endl;
                make_left_segment(it.first.first, it.first.second, inf, i);
            }
        }
    
    sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
    sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
    for (interval_ray cur : seg_left)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, -1);
    ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    for (interval_ray cur : seg_right)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, 1);
        ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    
    for (int i = 1; i <= 4 * cnt; i ++)
    {
        pt_rf[i] = (int)(tree_right[i].size()) - 1;
        bs_rf[i] = inf;
    
        pt_lf[i] = 0;
        bs_lf[i] = -inf;
        ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
        ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
    }
    
    for (int i = q; i > 0; i --)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
    
        while(true)
        {
    
            while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
            {
                bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                pt_rf[root] --;
            }
            longest = max(longest, task[i].l - bs_rf[root]);
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
        while(true)
        {
            ///cout << "step " << root << " " << left << " " << right << endl;
            while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
            {
                bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                pt_lf[root] ++;
            }
            longest = max(longest, bs_lf[root] - task[i].l);
            /**for (interval_ray cur : tree_left[root])
            {
                if (task[i].l >= cur.ray.second)
                    longest = max(longest, cur.ray.first - task[i].l);
            }*/
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        if (ans[i] > 2e8)
            cout << -1 << endl;
        else
            cout << ans[i] << endl;
    }
}
void solve()
{
    input();
    ///compress_data();
    answer_queries();
}
    
void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    
    speed();
    solve();
    return 0;
}
    
/**
2 1 2
3 1 1 3
5 1 3 4
3 3
3 4
    
    
    
    
4 2 4
3 1 1 10
9 2 2 4
7 2 5 7
4 1 8 10
5 3
5 6
5 9
1 10
    
2 1 3
1 1 1 4
1 1 2 6
1 3
1 5
1 7
    
1 1 1
100000000 1 1 1
1 1
    
    
    
*/

Compilation message

new_home.cpp: In function 'void answer_queries()':
new_home.cpp:334:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  334 |     for (int i = 1; i < dat.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:434:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  434 |             while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                   ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 31 ms 152144 KB Output is correct
2 Correct 31 ms 152400 KB Output is correct
3 Correct 30 ms 152156 KB Output is correct
4 Correct 31 ms 152156 KB Output is correct
5 Correct 32 ms 152408 KB Output is correct
6 Correct 33 ms 152668 KB Output is correct
7 Correct 33 ms 152972 KB Output is correct
8 Correct 34 ms 152668 KB Output is correct
9 Correct 33 ms 152916 KB Output is correct
10 Correct 36 ms 152864 KB Output is correct
11 Correct 32 ms 152528 KB Output is correct
12 Correct 32 ms 152668 KB Output is correct
13 Correct 33 ms 152404 KB Output is correct
14 Correct 32 ms 152412 KB Output is correct
15 Correct 33 ms 152624 KB Output is correct
16 Correct 33 ms 152652 KB Output is correct
17 Correct 33 ms 152668 KB Output is correct
18 Correct 34 ms 152668 KB Output is correct
19 Correct 33 ms 152668 KB Output is correct
20 Correct 32 ms 153088 KB Output is correct
21 Correct 32 ms 152624 KB Output is correct
22 Correct 33 ms 152924 KB Output is correct
23 Correct 32 ms 152660 KB Output is correct
24 Correct 33 ms 152684 KB Output is correct
25 Correct 33 ms 152656 KB Output is correct
26 Correct 32 ms 152668 KB Output is correct
27 Correct 31 ms 152400 KB Output is correct
28 Correct 32 ms 152664 KB Output is correct
29 Correct 32 ms 152632 KB Output is correct
30 Correct 32 ms 152408 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 31 ms 152144 KB Output is correct
2 Correct 31 ms 152400 KB Output is correct
3 Correct 30 ms 152156 KB Output is correct
4 Correct 31 ms 152156 KB Output is correct
5 Correct 32 ms 152408 KB Output is correct
6 Correct 33 ms 152668 KB Output is correct
7 Correct 33 ms 152972 KB Output is correct
8 Correct 34 ms 152668 KB Output is correct
9 Correct 33 ms 152916 KB Output is correct
10 Correct 36 ms 152864 KB Output is correct
11 Correct 32 ms 152528 KB Output is correct
12 Correct 32 ms 152668 KB Output is correct
13 Correct 33 ms 152404 KB Output is correct
14 Correct 32 ms 152412 KB Output is correct
15 Correct 33 ms 152624 KB Output is correct
16 Correct 33 ms 152652 KB Output is correct
17 Correct 33 ms 152668 KB Output is correct
18 Correct 34 ms 152668 KB Output is correct
19 Correct 33 ms 152668 KB Output is correct
20 Correct 32 ms 153088 KB Output is correct
21 Correct 32 ms 152624 KB Output is correct
22 Correct 33 ms 152924 KB Output is correct
23 Correct 32 ms 152660 KB Output is correct
24 Correct 33 ms 152684 KB Output is correct
25 Correct 33 ms 152656 KB Output is correct
26 Correct 32 ms 152668 KB Output is correct
27 Correct 31 ms 152400 KB Output is correct
28 Correct 32 ms 152664 KB Output is correct
29 Correct 32 ms 152632 KB Output is correct
30 Correct 32 ms 152408 KB Output is correct
31 Correct 992 ms 301128 KB Output is correct
32 Correct 115 ms 170552 KB Output is correct
33 Correct 944 ms 303888 KB Output is correct
34 Correct 956 ms 302728 KB Output is correct
35 Correct 962 ms 304328 KB Output is correct
36 Correct 943 ms 303700 KB Output is correct
37 Correct 717 ms 290488 KB Output is correct
38 Correct 715 ms 291776 KB Output is correct
39 Correct 615 ms 263048 KB Output is correct
40 Correct 643 ms 270520 KB Output is correct
41 Correct 680 ms 251332 KB Output is correct
42 Correct 682 ms 254592 KB Output is correct
43 Correct 95 ms 165712 KB Output is correct
44 Correct 685 ms 250236 KB Output is correct
45 Correct 641 ms 241528 KB Output is correct
46 Correct 509 ms 223608 KB Output is correct
47 Correct 404 ms 220028 KB Output is correct
48 Correct 365 ms 216444 KB Output is correct
49 Correct 452 ms 229416 KB Output is correct
50 Correct 528 ms 246288 KB Output is correct
51 Correct 437 ms 224632 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2027 ms 791968 KB Output is correct
2 Correct 2099 ms 820356 KB Output is correct
3 Correct 1986 ms 978884 KB Output is correct
4 Correct 1938 ms 871376 KB Output is correct
5 Correct 2077 ms 806364 KB Output is correct
6 Correct 2099 ms 787936 KB Output is correct
7 Correct 1941 ms 853936 KB Output is correct
8 Correct 1920 ms 804800 KB Output is correct
9 Correct 2100 ms 824856 KB Output is correct
10 Correct 2196 ms 781428 KB Output is correct
11 Correct 1868 ms 769320 KB Output is correct
12 Correct 1999 ms 880232 KB Output is correct
# Verdict Execution time Memory Grader output
1 Runtime error 1937 ms 611480 KB Execution killed with signal 6
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 31 ms 152144 KB Output is correct
2 Correct 31 ms 152400 KB Output is correct
3 Correct 30 ms 152156 KB Output is correct
4 Correct 31 ms 152156 KB Output is correct
5 Correct 32 ms 152408 KB Output is correct
6 Correct 33 ms 152668 KB Output is correct
7 Correct 33 ms 152972 KB Output is correct
8 Correct 34 ms 152668 KB Output is correct
9 Correct 33 ms 152916 KB Output is correct
10 Correct 36 ms 152864 KB Output is correct
11 Correct 32 ms 152528 KB Output is correct
12 Correct 32 ms 152668 KB Output is correct
13 Correct 33 ms 152404 KB Output is correct
14 Correct 32 ms 152412 KB Output is correct
15 Correct 33 ms 152624 KB Output is correct
16 Correct 33 ms 152652 KB Output is correct
17 Correct 33 ms 152668 KB Output is correct
18 Correct 34 ms 152668 KB Output is correct
19 Correct 33 ms 152668 KB Output is correct
20 Correct 32 ms 153088 KB Output is correct
21 Correct 32 ms 152624 KB Output is correct
22 Correct 33 ms 152924 KB Output is correct
23 Correct 32 ms 152660 KB Output is correct
24 Correct 33 ms 152684 KB Output is correct
25 Correct 33 ms 152656 KB Output is correct
26 Correct 32 ms 152668 KB Output is correct
27 Correct 31 ms 152400 KB Output is correct
28 Correct 32 ms 152664 KB Output is correct
29 Correct 32 ms 152632 KB Output is correct
30 Correct 32 ms 152408 KB Output is correct
31 Correct 992 ms 301128 KB Output is correct
32 Correct 115 ms 170552 KB Output is correct
33 Correct 944 ms 303888 KB Output is correct
34 Correct 956 ms 302728 KB Output is correct
35 Correct 962 ms 304328 KB Output is correct
36 Correct 943 ms 303700 KB Output is correct
37 Correct 717 ms 290488 KB Output is correct
38 Correct 715 ms 291776 KB Output is correct
39 Correct 615 ms 263048 KB Output is correct
40 Correct 643 ms 270520 KB Output is correct
41 Correct 680 ms 251332 KB Output is correct
42 Correct 682 ms 254592 KB Output is correct
43 Correct 95 ms 165712 KB Output is correct
44 Correct 685 ms 250236 KB Output is correct
45 Correct 641 ms 241528 KB Output is correct
46 Correct 509 ms 223608 KB Output is correct
47 Correct 404 ms 220028 KB Output is correct
48 Correct 365 ms 216444 KB Output is correct
49 Correct 452 ms 229416 KB Output is correct
50 Correct 528 ms 246288 KB Output is correct
51 Correct 437 ms 224632 KB Output is correct
52 Correct 663 ms 296052 KB Output is correct
53 Correct 617 ms 298960 KB Output is correct
54 Correct 753 ms 289544 KB Output is correct
55 Correct 601 ms 269436 KB Output is correct
56 Correct 589 ms 277896 KB Output is correct
57 Correct 654 ms 257256 KB Output is correct
58 Correct 660 ms 273968 KB Output is correct
59 Correct 650 ms 281132 KB Output is correct
60 Correct 660 ms 261236 KB Output is correct
61 Correct 161 ms 197468 KB Output is correct
62 Correct 655 ms 307216 KB Output is correct
63 Correct 668 ms 286732 KB Output is correct
64 Correct 685 ms 285292 KB Output is correct
65 Correct 733 ms 278516 KB Output is correct
66 Correct 695 ms 260192 KB Output is correct
67 Correct 195 ms 186740 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 31 ms 152144 KB Output is correct
2 Correct 31 ms 152400 KB Output is correct
3 Correct 30 ms 152156 KB Output is correct
4 Correct 31 ms 152156 KB Output is correct
5 Correct 32 ms 152408 KB Output is correct
6 Correct 33 ms 152668 KB Output is correct
7 Correct 33 ms 152972 KB Output is correct
8 Correct 34 ms 152668 KB Output is correct
9 Correct 33 ms 152916 KB Output is correct
10 Correct 36 ms 152864 KB Output is correct
11 Correct 32 ms 152528 KB Output is correct
12 Correct 32 ms 152668 KB Output is correct
13 Correct 33 ms 152404 KB Output is correct
14 Correct 32 ms 152412 KB Output is correct
15 Correct 33 ms 152624 KB Output is correct
16 Correct 33 ms 152652 KB Output is correct
17 Correct 33 ms 152668 KB Output is correct
18 Correct 34 ms 152668 KB Output is correct
19 Correct 33 ms 152668 KB Output is correct
20 Correct 32 ms 153088 KB Output is correct
21 Correct 32 ms 152624 KB Output is correct
22 Correct 33 ms 152924 KB Output is correct
23 Correct 32 ms 152660 KB Output is correct
24 Correct 33 ms 152684 KB Output is correct
25 Correct 33 ms 152656 KB Output is correct
26 Correct 32 ms 152668 KB Output is correct
27 Correct 31 ms 152400 KB Output is correct
28 Correct 32 ms 152664 KB Output is correct
29 Correct 32 ms 152632 KB Output is correct
30 Correct 32 ms 152408 KB Output is correct
31 Correct 992 ms 301128 KB Output is correct
32 Correct 115 ms 170552 KB Output is correct
33 Correct 944 ms 303888 KB Output is correct
34 Correct 956 ms 302728 KB Output is correct
35 Correct 962 ms 304328 KB Output is correct
36 Correct 943 ms 303700 KB Output is correct
37 Correct 717 ms 290488 KB Output is correct
38 Correct 715 ms 291776 KB Output is correct
39 Correct 615 ms 263048 KB Output is correct
40 Correct 643 ms 270520 KB Output is correct
41 Correct 680 ms 251332 KB Output is correct
42 Correct 682 ms 254592 KB Output is correct
43 Correct 95 ms 165712 KB Output is correct
44 Correct 685 ms 250236 KB Output is correct
45 Correct 641 ms 241528 KB Output is correct
46 Correct 509 ms 223608 KB Output is correct
47 Correct 404 ms 220028 KB Output is correct
48 Correct 365 ms 216444 KB Output is correct
49 Correct 452 ms 229416 KB Output is correct
50 Correct 528 ms 246288 KB Output is correct
51 Correct 437 ms 224632 KB Output is correct
52 Correct 2027 ms 791968 KB Output is correct
53 Correct 2099 ms 820356 KB Output is correct
54 Correct 1986 ms 978884 KB Output is correct
55 Correct 1938 ms 871376 KB Output is correct
56 Correct 2077 ms 806364 KB Output is correct
57 Correct 2099 ms 787936 KB Output is correct
58 Correct 1941 ms 853936 KB Output is correct
59 Correct 1920 ms 804800 KB Output is correct
60 Correct 2100 ms 824856 KB Output is correct
61 Correct 2196 ms 781428 KB Output is correct
62 Correct 1868 ms 769320 KB Output is correct
63 Correct 1999 ms 880232 KB Output is correct
64 Runtime error 1937 ms 611480 KB Execution killed with signal 6
65 Halted 0 ms 0 KB -