Submission #864952

# Submission time Handle Problem Language Result Execution time Memory
864952 2023-10-23T19:12:39 Z danikoynov New Home (APIO18_new_home) C++14
47 / 100
5000 ms 1009004 KB
#include<bits/stdc++.h>
#define endl '\n'
    
using namespace std;
typedef long long ll;
    
const int maxn = 6e5 + 10, inf = 1e9;
    
struct store
{
    int x, t, a, b;
}s[maxn];
    
struct query
{
    int l, y, idx;
}task[maxn];
    
int n, k, q;
int readInt () {
    bool minus = false;
    int result = 0;
    char ch;
    ch = getchar();
    while (true) {
        if (ch == '-') break;
        if (ch >= '0' && ch <= '9') break;
        ch = getchar();
    }
    if (ch == '-') minus = true; else result = ch-'0';
    while (true) {
        ch = getchar();
        if (ch < '0' || ch > '9') break;
        result = result*10 + (ch - '0');
    }
    if (minus)
        return -result;
    else
        return result;
}
void input()
{
    n = readInt();
    k = readInt();
    q = readInt();
    ///cin >> n >> k >> q;
    for (int i = 1; i <= n; i ++)
    {
        s[i].x = readInt();
        s[i].t = readInt();
        s[i].a = readInt();
        s[i].b = readInt();
        ///        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
    }
    
    for (int i = 1; i <= q; i ++)
    {
            task[i].l = readInt();
            task[i].y = readInt();
            task[i].idx = i;
        ///cin >> task[i].l >> task[i].y, task[i].idx = i;
    }
}
    
unordered_map < int, int > rev;
int dif, back_to[2 * maxn];
    
 
 
    
bool cmp_query(query &t1, query &t2)
{
    return t1.l < t2.l;
}
    
struct event
{
    int type, cor, add, arrive;
    
    event(int _type, int _cor, int _add, int _arrive)
    {
        type = _type;
        cor = _cor;
        add = _add;
        arrive = _arrive;
    }
};
    
bool cmp_event(event &e1, event &e2)
{
    if (e1.arrive != e2.arrive)
        return e1.arrive < e2.arrive;
    
    if (e1.add != e2.add)
        return e1.add < e2.add;
    
    return e1.cor < e2.cor; /// could have dublicates
}
    

    
multiset < int > act[maxn];
    
struct interval_ray
{
    int s, e;
    pair < int, int > ray;
    
    interval_ray(int _s, int _e, pair < int, int > _ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }
 
    interval_ray(int &_s, int &_e, pair < int, int > &_ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }
};
    
vector < interval_ray > seg_left, seg_right;
    struct hash_pair {
    template <class T1, class T2>
    size_t operator()(const pair<T1, T2>& p) const
    {
        auto hash1 = hash<T1>{}(p.first);
        auto hash2 = hash<T2>{}(p.second);
 
        if (hash1 != hash2) {
            return hash1 ^ hash2;              
        }
         
        // If hash1 == hash2, their XOR is zero.
          return hash1;
    }
};
unordered_map < pair < int, int >, int, hash_pair > ray_right[maxn], ray_left[maxn];
vector < int > dat;
void make_left_segment(int start, int finish, int timer, int type)
{
    ///cout << "left " << start << " " << finish << " " << timer << endl;
    seg_left.push_back(interval_ray(ray_left[type][{start, finish}], timer - 1, {start, finish}));
    ray_left[type][{start, finish}] = 0;
}
    
void make_right_segment(int start, int finish, int timer, int type)
{
    seg_right.push_back(interval_ray(ray_right[type][{start, finish}], timer - 1, {start, finish}));
    ray_right[type][{start, finish}] = 0;
}
    
void add_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].upper_bound(cor);
    int aft = *it;
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        
        make_right_segment(-inf, inf, timer, type);
        ray_left[type][{cor, -inf}] = timer;
        ray_right[type][{cor, +inf}] = timer;
    }
    else
    if (bef == - inf)
    {
        make_left_segment(aft, -inf, timer, type);
        int mid = (cor + aft) / 2;
        ray_right[type][{cor, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
        ray_left[type][{cor, -inf}] = timer;
    }
    else
    if (aft == inf)
    {
        make_right_segment(bef, inf, timer, type);
        int mid = (bef + cor) / 2;
        ray_left[type][{cor, mid + 1}] = timer;
        ray_right[type][{bef, mid}] = timer;
        ray_right[type][{cor, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        make_right_segment(bef, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
        int mid_left = (bef + cor) / 2;
        ray_right[type][{bef, mid_left}] = timer;
        ray_left[type][{cor, mid_left + 1}] = timer;
        int mid_right = (cor + aft) / 2;
        ray_right[type][{cor, mid_right}] = timer;
        ray_left[type][{aft, mid_right + 1}] = timer;
    }
    
    act[type].insert(cor);
}
    
    
void remove_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].find(cor);
    int aft = *next(it);
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        ///cout << "reverse " << timer << endl;
    
        make_left_segment(cor, -inf, timer, type);
        make_right_segment(cor, +inf, timer, type);
        ray_right[type][{-inf, inf}] = timer;
    
    }
    else
    if (bef == -inf)
    {
    
        ///cout << "step " << timer << endl;
        make_left_segment(cor, -inf, timer, type);
        int mid = (cor + aft) / 2;
        make_right_segment(cor, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
        ray_left[type][{aft, -inf}] = timer;
    
    
    }
    else
    if (aft == inf)
    {
    
        make_right_segment(cor, inf, timer, type);
        int mid = (bef + cor) / 2;
        make_left_segment(cor, mid + 1, timer, type);
        make_right_segment(bef, mid, timer, type);
        ray_right[type][{bef, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        ///assert((ray_right[type][{bef, mid}]) == 0);
        ///assert((ray_left[type][{aft, mid + 1}]) == 0);
    
        int mid_left = (bef + cor) / 2;
        make_right_segment(bef, mid_left, timer, type);
        make_left_segment(cor, mid_left + 1, timer, type);
        int mid_right = (aft + cor) / 2;
        make_right_segment(cor, mid_right, timer, type);
        make_left_segment(aft, mid_right + 1, timer, type);
    
                ray_right[type][{bef, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
    
    }
    
    act[type].erase(it);
}
    
int ans[maxn];
    
vector < interval_ray > tree_left[maxn * 4], tree_right[maxn * 4];
int pt_lf[4 * maxn], bs_lf[4 * maxn];
int pt_rf[4 * maxn], bs_rf[4 * maxn];
    
bool cmp_ray_second(interval_ray r1, interval_ray r2)
{
    return r1.ray.second < r2.ray.second;
}
void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
{
    if (left > qright || right < qleft)
        return;
    
    if (left >= qleft && right <= qright)
    {
        if (type == -1)
            tree_left[root].push_back(ray);
        else
            tree_right[root].push_back(ray);
        return;
    }
    
    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, ray, type);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);
    
}
    
unordered_map < int, int > event_times;
    
void answer_queries()
{
    sort(task + 1, task + q + 1, cmp_query);
    
    vector < event > events;
    for (int i = 1; i <= n; i ++)
    {
        events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
        events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
    }
    
    sort(events.begin(), events.end(), cmp_event);
    
    for (int i = 1; i <= k; i ++)
    {
        act[i].insert(-inf);
        act[i].insert(inf);
        ray_right[i][{-inf, inf}] = 1;
    }
    
    
    int cnt = 0;
    dat.push_back(1);
    dat.push_back(0);
    
    for (event cur : events)
    {
        ///dat.push_back(cur.arrive - 1);
        dat.push_back(cur.arrive);
        ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
        if (cur.add == 1)
            add_event(cur.type, cur.cor, cur.arrive);
        else
            remove_event(cur.type, cur.cor, cur.arrive);
    }
    
    dat.push_back(inf - 1);
    dat.push_back(inf);
    
    for (int i = 1; i <= q; i ++)
        dat.push_back(task[i].y);
    
    sort(dat.begin(), dat.end());
    cnt ++;
    event_times[dat[0]] = cnt;
    for (int i = 1; i < dat.size(); i ++)
    {
        if (dat[i] == dat[i - 1])
            continue;
        cnt ++;
        event_times[dat[i]] = cnt;
    }
    
    
    for (int i = 1; i <= k; i ++)
        for (auto it : ray_right[i])
        {
            ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
            if (it.second != 0)
                make_right_segment(it.first.first, it.first.second, inf, i);
        }
    
    
    for (int i = 1; i <= k; i ++)
        for (auto it : ray_left[i])
        {
            if (it.second != 0)
            {
            ///cout << "here " << endl;
                make_left_segment(it.first.first, it.first.second, inf, i);
            }
        }
    
    sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
    sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
    for (interval_ray cur : seg_left)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, -1);
    ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    for (interval_ray cur : seg_right)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, 1);
        ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    
    for (int i = 1; i <= 4 * cnt; i ++)
    {
        pt_rf[i] = (int)(tree_right[i].size()) - 1;
        bs_rf[i] = inf;
    
        pt_lf[i] = 0;
        bs_lf[i] = -inf;
        ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
        ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
    }
    
    for (int i = q; i > 0; i --)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
    
        while(true)
        {
    
            while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
            {
                bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                pt_rf[root] --;
            }
            longest = max(longest, task[i].l - bs_rf[root]);
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
        while(true)
        {
            ///cout << "step " << root << " " << left << " " << right << endl;
            while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
            {
                bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                pt_lf[root] ++;
            }
            longest = max(longest, bs_lf[root] - task[i].l);
            /**for (interval_ray cur : tree_left[root])
            {
                if (task[i].l >= cur.ray.second)
                    longest = max(longest, cur.ray.first - task[i].l);
            }*/
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        if (ans[i] > 2e8)
            cout << -1 << endl;
        else
            cout << ans[i] << endl;
    }
}
void solve()
{
    input();
    ///compress_data();
    answer_queries();
}
    
void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    
    speed();
    solve();
    return 0;
}
    
/**
2 1 2
3 1 1 3
5 1 3 4
3 3
3 4
    
    
    
    
4 2 4
3 1 1 10
9 2 2 4
7 2 5 7
4 1 8 10
5 3
5 6
5 9
1 10
    
2 1 3
1 1 1 4
1 1 2 6
1 3
1 5
1 7
    
1 1 1
100000000 1 1 1
1 1
    
    
    
*/

Compilation message

new_home.cpp: In function 'void answer_queries()':
new_home.cpp:339:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  339 |     for (int i = 1; i < dat.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:439:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  439 |             while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                   ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 47 ms 222032 KB Output is correct
2 Correct 46 ms 222036 KB Output is correct
3 Correct 46 ms 222064 KB Output is correct
4 Correct 47 ms 222032 KB Output is correct
5 Correct 46 ms 222056 KB Output is correct
6 Correct 47 ms 222664 KB Output is correct
7 Correct 47 ms 222552 KB Output is correct
8 Correct 47 ms 222684 KB Output is correct
9 Correct 47 ms 222776 KB Output is correct
10 Correct 47 ms 222708 KB Output is correct
11 Correct 46 ms 222288 KB Output is correct
12 Correct 46 ms 222544 KB Output is correct
13 Correct 47 ms 222300 KB Output is correct
14 Correct 49 ms 222756 KB Output is correct
15 Correct 46 ms 222636 KB Output is correct
16 Correct 47 ms 222548 KB Output is correct
17 Correct 46 ms 222556 KB Output is correct
18 Correct 47 ms 222656 KB Output is correct
19 Correct 50 ms 222548 KB Output is correct
20 Correct 47 ms 222548 KB Output is correct
21 Correct 46 ms 222296 KB Output is correct
22 Correct 47 ms 222764 KB Output is correct
23 Correct 47 ms 222556 KB Output is correct
24 Correct 48 ms 222812 KB Output is correct
25 Correct 47 ms 222456 KB Output is correct
26 Correct 49 ms 222272 KB Output is correct
27 Correct 46 ms 222204 KB Output is correct
28 Correct 46 ms 222292 KB Output is correct
29 Correct 46 ms 222308 KB Output is correct
30 Correct 49 ms 222204 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 47 ms 222032 KB Output is correct
2 Correct 46 ms 222036 KB Output is correct
3 Correct 46 ms 222064 KB Output is correct
4 Correct 47 ms 222032 KB Output is correct
5 Correct 46 ms 222056 KB Output is correct
6 Correct 47 ms 222664 KB Output is correct
7 Correct 47 ms 222552 KB Output is correct
8 Correct 47 ms 222684 KB Output is correct
9 Correct 47 ms 222776 KB Output is correct
10 Correct 47 ms 222708 KB Output is correct
11 Correct 46 ms 222288 KB Output is correct
12 Correct 46 ms 222544 KB Output is correct
13 Correct 47 ms 222300 KB Output is correct
14 Correct 49 ms 222756 KB Output is correct
15 Correct 46 ms 222636 KB Output is correct
16 Correct 47 ms 222548 KB Output is correct
17 Correct 46 ms 222556 KB Output is correct
18 Correct 47 ms 222656 KB Output is correct
19 Correct 50 ms 222548 KB Output is correct
20 Correct 47 ms 222548 KB Output is correct
21 Correct 46 ms 222296 KB Output is correct
22 Correct 47 ms 222764 KB Output is correct
23 Correct 47 ms 222556 KB Output is correct
24 Correct 48 ms 222812 KB Output is correct
25 Correct 47 ms 222456 KB Output is correct
26 Correct 49 ms 222272 KB Output is correct
27 Correct 46 ms 222204 KB Output is correct
28 Correct 46 ms 222292 KB Output is correct
29 Correct 46 ms 222308 KB Output is correct
30 Correct 49 ms 222204 KB Output is correct
31 Correct 971 ms 375004 KB Output is correct
32 Correct 129 ms 240192 KB Output is correct
33 Correct 941 ms 376576 KB Output is correct
34 Correct 951 ms 374480 KB Output is correct
35 Correct 980 ms 377416 KB Output is correct
36 Correct 956 ms 378420 KB Output is correct
37 Correct 743 ms 363296 KB Output is correct
38 Correct 768 ms 363452 KB Output is correct
39 Correct 627 ms 335548 KB Output is correct
40 Correct 666 ms 344604 KB Output is correct
41 Correct 697 ms 323964 KB Output is correct
42 Correct 691 ms 327252 KB Output is correct
43 Correct 104 ms 238096 KB Output is correct
44 Correct 681 ms 322684 KB Output is correct
45 Correct 645 ms 314232 KB Output is correct
46 Correct 538 ms 296492 KB Output is correct
47 Correct 407 ms 290552 KB Output is correct
48 Correct 380 ms 287048 KB Output is correct
49 Correct 455 ms 302256 KB Output is correct
50 Correct 534 ms 319116 KB Output is correct
51 Correct 468 ms 295004 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2052 ms 864216 KB Output is correct
2 Correct 2336 ms 906052 KB Output is correct
3 Correct 2001 ms 968048 KB Output is correct
4 Correct 1998 ms 909140 KB Output is correct
5 Execution timed out 5073 ms 306636 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 4979 ms 962476 KB Output is correct
2 Correct 417 ms 305700 KB Output is correct
3 Execution timed out 5080 ms 1009004 KB Time limit exceeded
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 47 ms 222032 KB Output is correct
2 Correct 46 ms 222036 KB Output is correct
3 Correct 46 ms 222064 KB Output is correct
4 Correct 47 ms 222032 KB Output is correct
5 Correct 46 ms 222056 KB Output is correct
6 Correct 47 ms 222664 KB Output is correct
7 Correct 47 ms 222552 KB Output is correct
8 Correct 47 ms 222684 KB Output is correct
9 Correct 47 ms 222776 KB Output is correct
10 Correct 47 ms 222708 KB Output is correct
11 Correct 46 ms 222288 KB Output is correct
12 Correct 46 ms 222544 KB Output is correct
13 Correct 47 ms 222300 KB Output is correct
14 Correct 49 ms 222756 KB Output is correct
15 Correct 46 ms 222636 KB Output is correct
16 Correct 47 ms 222548 KB Output is correct
17 Correct 46 ms 222556 KB Output is correct
18 Correct 47 ms 222656 KB Output is correct
19 Correct 50 ms 222548 KB Output is correct
20 Correct 47 ms 222548 KB Output is correct
21 Correct 46 ms 222296 KB Output is correct
22 Correct 47 ms 222764 KB Output is correct
23 Correct 47 ms 222556 KB Output is correct
24 Correct 48 ms 222812 KB Output is correct
25 Correct 47 ms 222456 KB Output is correct
26 Correct 49 ms 222272 KB Output is correct
27 Correct 46 ms 222204 KB Output is correct
28 Correct 46 ms 222292 KB Output is correct
29 Correct 46 ms 222308 KB Output is correct
30 Correct 49 ms 222204 KB Output is correct
31 Correct 971 ms 375004 KB Output is correct
32 Correct 129 ms 240192 KB Output is correct
33 Correct 941 ms 376576 KB Output is correct
34 Correct 951 ms 374480 KB Output is correct
35 Correct 980 ms 377416 KB Output is correct
36 Correct 956 ms 378420 KB Output is correct
37 Correct 743 ms 363296 KB Output is correct
38 Correct 768 ms 363452 KB Output is correct
39 Correct 627 ms 335548 KB Output is correct
40 Correct 666 ms 344604 KB Output is correct
41 Correct 697 ms 323964 KB Output is correct
42 Correct 691 ms 327252 KB Output is correct
43 Correct 104 ms 238096 KB Output is correct
44 Correct 681 ms 322684 KB Output is correct
45 Correct 645 ms 314232 KB Output is correct
46 Correct 538 ms 296492 KB Output is correct
47 Correct 407 ms 290552 KB Output is correct
48 Correct 380 ms 287048 KB Output is correct
49 Correct 455 ms 302256 KB Output is correct
50 Correct 534 ms 319116 KB Output is correct
51 Correct 468 ms 295004 KB Output is correct
52 Correct 672 ms 365692 KB Output is correct
53 Correct 636 ms 368216 KB Output is correct
54 Correct 783 ms 360580 KB Output is correct
55 Correct 640 ms 339356 KB Output is correct
56 Correct 621 ms 348452 KB Output is correct
57 Correct 678 ms 327108 KB Output is correct
58 Correct 651 ms 342136 KB Output is correct
59 Correct 709 ms 350324 KB Output is correct
60 Correct 713 ms 330632 KB Output is correct
61 Correct 183 ms 267288 KB Output is correct
62 Correct 655 ms 376016 KB Output is correct
63 Correct 693 ms 357088 KB Output is correct
64 Correct 708 ms 353976 KB Output is correct
65 Correct 731 ms 347120 KB Output is correct
66 Correct 703 ms 329764 KB Output is correct
67 Correct 207 ms 257340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 47 ms 222032 KB Output is correct
2 Correct 46 ms 222036 KB Output is correct
3 Correct 46 ms 222064 KB Output is correct
4 Correct 47 ms 222032 KB Output is correct
5 Correct 46 ms 222056 KB Output is correct
6 Correct 47 ms 222664 KB Output is correct
7 Correct 47 ms 222552 KB Output is correct
8 Correct 47 ms 222684 KB Output is correct
9 Correct 47 ms 222776 KB Output is correct
10 Correct 47 ms 222708 KB Output is correct
11 Correct 46 ms 222288 KB Output is correct
12 Correct 46 ms 222544 KB Output is correct
13 Correct 47 ms 222300 KB Output is correct
14 Correct 49 ms 222756 KB Output is correct
15 Correct 46 ms 222636 KB Output is correct
16 Correct 47 ms 222548 KB Output is correct
17 Correct 46 ms 222556 KB Output is correct
18 Correct 47 ms 222656 KB Output is correct
19 Correct 50 ms 222548 KB Output is correct
20 Correct 47 ms 222548 KB Output is correct
21 Correct 46 ms 222296 KB Output is correct
22 Correct 47 ms 222764 KB Output is correct
23 Correct 47 ms 222556 KB Output is correct
24 Correct 48 ms 222812 KB Output is correct
25 Correct 47 ms 222456 KB Output is correct
26 Correct 49 ms 222272 KB Output is correct
27 Correct 46 ms 222204 KB Output is correct
28 Correct 46 ms 222292 KB Output is correct
29 Correct 46 ms 222308 KB Output is correct
30 Correct 49 ms 222204 KB Output is correct
31 Correct 971 ms 375004 KB Output is correct
32 Correct 129 ms 240192 KB Output is correct
33 Correct 941 ms 376576 KB Output is correct
34 Correct 951 ms 374480 KB Output is correct
35 Correct 980 ms 377416 KB Output is correct
36 Correct 956 ms 378420 KB Output is correct
37 Correct 743 ms 363296 KB Output is correct
38 Correct 768 ms 363452 KB Output is correct
39 Correct 627 ms 335548 KB Output is correct
40 Correct 666 ms 344604 KB Output is correct
41 Correct 697 ms 323964 KB Output is correct
42 Correct 691 ms 327252 KB Output is correct
43 Correct 104 ms 238096 KB Output is correct
44 Correct 681 ms 322684 KB Output is correct
45 Correct 645 ms 314232 KB Output is correct
46 Correct 538 ms 296492 KB Output is correct
47 Correct 407 ms 290552 KB Output is correct
48 Correct 380 ms 287048 KB Output is correct
49 Correct 455 ms 302256 KB Output is correct
50 Correct 534 ms 319116 KB Output is correct
51 Correct 468 ms 295004 KB Output is correct
52 Correct 2052 ms 864216 KB Output is correct
53 Correct 2336 ms 906052 KB Output is correct
54 Correct 2001 ms 968048 KB Output is correct
55 Correct 1998 ms 909140 KB Output is correct
56 Execution timed out 5073 ms 306636 KB Time limit exceeded
57 Halted 0 ms 0 KB -