답안 #864950

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
864950 2023-10-23T19:03:58 Z danikoynov 새 집 (APIO18_new_home) C++14
57 / 100
5000 ms 963088 KB
#include<bits/stdc++.h>
// #pragma __attribute__ ((always_inline)) inline
// #pragma GCC optimize ("O3")
// #pragma GCC target ("sse4")
#define endl '\n'
    
using namespace std;
typedef long long ll;
    
const int maxn = 6e5 + 10, inf = 1e9;
    
struct store
{
    int x, t, a, b;
}s[maxn];
    
struct query
{
    int l, y, idx;
}task[maxn];
    
int n, k, q;
int readInt () {
    bool minus = false;
    int result = 0;
    char ch;
    ch = getchar();
    while (true) {
        if (ch == '-') break;
        if (ch >= '0' && ch <= '9') break;
        ch = getchar();
    }
    if (ch == '-') minus = true; else result = ch-'0';
    while (true) {
        ch = getchar();
        if (ch < '0' || ch > '9') break;
        result = result*10 + (ch - '0');
    }
    if (minus)
        return -result;
    else
        return result;
}
void input()
{
    n = readInt();
    k = readInt();
    q = readInt();
    ///cin >> n >> k >> q;
    for (int i = 1; i <= n; i ++)
    {
        s[i].x = readInt();
        s[i].t = readInt();
        s[i].a = readInt();
        s[i].b = readInt();
        ///        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
    }
    
    for (int i = 1; i <= q; i ++)
    {
            task[i].l = readInt();
            task[i].y = readInt();
            task[i].idx = i;
        ///cin >> task[i].l >> task[i].y, task[i].idx = i;
    }
}
    
unordered_map < int, int > rev;
int dif, back_to[2 * maxn];
    


    
bool cmp_query(query &t1, query &t2)
{
    return t1.l < t2.l;
}
    
struct event
{
    int type, cor, add, arrive;
    
    event(int _type, int _cor, int _add, int _arrive)
    {
        type = _type;
        cor = _cor;
        add = _add;
        arrive = _arrive;
    }
};
    
bool cmp_event(event &e1, event &e2)
{
    if (e1.arrive != e2.arrive)
        return e1.arrive < e2.arrive;
    
    if (e1.add != e2.add)
        return e1.add < e2.add;
    
    return e1.cor < e2.cor; /// could have dublicates
}
    
    
    
multiset < int > act[maxn];
    
struct interval_ray
{
    int s, e;
    pair < int, int > ray;
    
    interval_ray(int _s, int _e, pair < int, int > _ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }

    interval_ray(int &_s, int &_e, pair < int, int > &_ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }
};
    
struct hash_pair {
    template <class T1, class T2>
    size_t operator()(const pair<T1, T2>& p) const
    {
        auto hash1 = hash<T1>{}(p.first);
        auto hash2 = hash<T2>{}(p.second);
 
        if (hash1 != hash2) {
            return hash1 ^ hash2;              
        }
         
        // If hash1 == hash2, their XOR is zero.
          return hash1;
    }
};
 
vector < interval_ray > seg_left, seg_right;
    
// unordered_map <pair<int, int>, int, hash_pair> 
map <pair<int, int>, int>ray_right[maxn], ray_left[maxn];
vector < int > dat;

void make_left_segment(const int &start, const int &finish, const int &timer, const int &type)
{
    ///cout << "left " << start << " " << finish << " " << timer << endl;
    seg_left.push_back(interval_ray(ray_left[type][{start, finish}], timer - 1, {start, finish}));
    ray_left[type][{start, finish}] = 0;
}
    
void make_right_segment(const int &start, const int &finish, const int &timer, const int &type)
{
    seg_right.push_back(interval_ray(ray_right[type][{start, finish}], timer - 1, {start, finish}));
    ray_right[type][{start, finish}] = 0;
}
    
void add_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].upper_bound(cor);
    int aft = *it;
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        
        make_right_segment(-inf, inf, timer, type);
        ray_left[type][{cor, -inf}] = timer;
        ray_right[type][{cor, +inf}] = timer;
    }
    else
    if (bef == - inf)
    {
        make_left_segment(aft, -inf, timer, type);
        int mid = (cor + aft) / 2;
        ray_right[type][{cor, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
        ray_left[type][{cor, -inf}] = timer;
    }
    else
    if (aft == inf)
    {
        make_right_segment(bef, inf, timer, type);
        int mid = (bef + cor) / 2;
        ray_left[type][{cor, mid + 1}] = timer;
        ray_right[type][{bef, mid}] = timer;
        ray_right[type][{cor, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        make_right_segment(bef, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
        int mid_left = (bef + cor) / 2;
        ray_right[type][{bef, mid_left}] = timer;
        ray_left[type][{cor, mid_left + 1}] = timer;
        int mid_right = (cor + aft) / 2;
        ray_right[type][{cor, mid_right}] = timer;
        ray_left[type][{aft, mid_right + 1}] = timer;
    }
    
    act[type].insert(cor);
}
    
    
void remove_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].find(cor);
    int aft = *next(it);
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        ///cout << "reverse " << timer << endl;
    
        make_left_segment(cor, -inf, timer, type);
        make_right_segment(cor, +inf, timer, type);
        ray_right[type][{-inf, inf}] = timer;
    
    }
    else
    if (bef == -inf)
    {
    
        ///cout << "step " << timer << endl;
        make_left_segment(cor, -inf, timer, type);
        int mid = (cor + aft) / 2;
        make_right_segment(cor, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
                ray_left[type][{aft, -inf}] = timer;
    
    
    }
    else
    if (aft == inf)
    {
    
        make_right_segment(cor, inf, timer, type);
        int mid = (bef + cor) / 2;
        make_left_segment(cor, mid + 1, timer, type);
        make_right_segment(bef, mid, timer, type);
                ray_right[type][{bef, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        ///assert((ray_right[type][{bef, mid}]) == 0);
        ///assert((ray_left[type][{aft, mid + 1}]) == 0);
    
        int mid_left = (bef + cor) / 2;
        make_right_segment(bef, mid_left, timer, type);
        make_left_segment(cor, mid_left + 1, timer, type);
        int mid_right = (aft + cor) / 2;
        make_right_segment(cor, mid_right, timer, type);
        make_left_segment(aft, mid_right + 1, timer, type);
    
                ray_right[type][{bef, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
    
    }
    
    act[type].erase(it);
}
    
int ans[maxn];
    
vector < interval_ray > tree_left[maxn * 4], tree_right[maxn * 4];
int pt_lf[4 * maxn], bs_lf[4 * maxn];
int pt_rf[4 * maxn], bs_rf[4 * maxn];
    
bool cmp_ray_second(interval_ray r1, interval_ray r2)
{
    return r1.ray.second < r2.ray.second;
}
void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
{
    if (left > qright || right < qleft)
        return;
    
    if (left >= qleft && right <= qright)
    {
        if (type == -1)
            tree_left[root].push_back(ray);
        else
            tree_right[root].push_back(ray);
        return;
    }
    
    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, ray, type);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);
    
}
    
unordered_map < int, int > event_times;
    
void answer_queries()
{
    sort(task + 1, task + q + 1, cmp_query);
    
    vector < event > events;
    for (int i = 1; i <= n; i ++)
    {
        events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
        events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
    }
    
    sort(events.begin(), events.end(), cmp_event);
    
    for (int i = 1; i <= k; i ++)
    {
        act[i].insert(-inf);
        act[i].insert(inf);
        ray_right[i][{-inf, inf}] = 1;
    }
    
    
    int cnt = 0;
    dat.push_back(1);
    dat.push_back(0);
    
    for (event cur : events)
    {
        ///dat.push_back(cur.arrive - 1);
        dat.push_back(cur.arrive);
        ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
        if (cur.add == 1)
            add_event(cur.type, cur.cor, cur.arrive);
        else
            remove_event(cur.type, cur.cor, cur.arrive);
    }
    
    dat.push_back(inf - 1);
    dat.push_back(inf);
    
    for (int i = 1; i <= q; i ++)
        dat.push_back(task[i].y);
    
    sort(dat.begin(), dat.end());
    cnt ++;
    event_times[dat[0]] = cnt;
    for (int i = 1; i < dat.size(); i ++)
    {
        if (dat[i] == dat[i - 1])
            continue;
        cnt ++;
        event_times[dat[i]] = cnt;
    }
    
    map < pair < int, int >, int > :: iterator it;
    for (int i = 1; i <= k; i ++)
        for (it = ray_right[i].begin(); it != ray_right[i].end(); it ++)
        {
            ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
            if (it -> second != 0)
                make_right_segment(it -> first.first, it -> first.second, inf, i);
        }
    
    
    for (int i = 1; i <= k; i ++)
        for (it = ray_left[i].begin(); it != ray_left[i].end(); it ++)
        {
            if (it -> second != 0)
            {
            ///cout << "here " << endl;
                make_left_segment(it -> first.first, it -> first.second, inf, i);
            }
        }
    
    sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
    sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
    for (interval_ray cur : seg_left)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, -1);
    ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    for (interval_ray cur : seg_right)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, 1);
        ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    
    for (int i = 1; i <= 4 * cnt; i ++)
    {
        pt_rf[i] = (int)(tree_right[i].size()) - 1;
        bs_rf[i] = inf;
    
        pt_lf[i] = 0;
        bs_lf[i] = -inf;
        ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
        ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
    }
    
    for (int i = q; i > 0; i --)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
    
        while(true)
        {
    
            while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
            {
                bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                pt_rf[root] --;
            }
            longest = max(longest, task[i].l - bs_rf[root]);
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
        while(true)
        {
            ///cout << "step " << root << " " << left << " " << right << endl;
            while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
            {
                bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                pt_lf[root] ++;
            }
            longest = max(longest, bs_lf[root] - task[i].l);
            /**for (interval_ray cur : tree_left[root])
            {
                if (task[i].l >= cur.ray.second)
                    longest = max(longest, cur.ray.first - task[i].l);
            }*/
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        if (ans[i] > 2e8)
            cout << -1 << endl;
        else
            cout << ans[i] << endl;
    }
}
void solve()
{
    input();
    ///compress_data();
    answer_queries();
}
    
void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    
    speed();
    solve();
    return 0;
}
    
/**
2 1 2
3 1 1 3
5 1 3 4
3 3
3 4
    
    
    
    
4 2 4
3 1 1 10
9 2 2 4
7 2 5 7
4 1 8 10
5 3
5 6
5 9
1 10
    
2 1 3
1 1 1 4
1 1 2 6
1 3
1 5
1 7
    
1 1 1
100000000 1 1 1
1 1
    
    
    
*/

Compilation message

new_home.cpp: In function 'void answer_queries()':
new_home.cpp:346:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  346 |     for (int i = 1; i < dat.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:446:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  446 |             while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                   ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 51 ms 211700 KB Output is correct
2 Correct 42 ms 211656 KB Output is correct
3 Correct 50 ms 211792 KB Output is correct
4 Correct 43 ms 211804 KB Output is correct
5 Correct 43 ms 211792 KB Output is correct
6 Correct 52 ms 212376 KB Output is correct
7 Correct 44 ms 212308 KB Output is correct
8 Correct 47 ms 212316 KB Output is correct
9 Correct 49 ms 212360 KB Output is correct
10 Correct 49 ms 212304 KB Output is correct
11 Correct 43 ms 212144 KB Output is correct
12 Correct 44 ms 212048 KB Output is correct
13 Correct 63 ms 212052 KB Output is correct
14 Correct 43 ms 212060 KB Output is correct
15 Correct 50 ms 212308 KB Output is correct
16 Correct 44 ms 212352 KB Output is correct
17 Correct 50 ms 212564 KB Output is correct
18 Correct 44 ms 212316 KB Output is correct
19 Correct 45 ms 212252 KB Output is correct
20 Correct 45 ms 212136 KB Output is correct
21 Correct 47 ms 211964 KB Output is correct
22 Correct 45 ms 212408 KB Output is correct
23 Correct 45 ms 212396 KB Output is correct
24 Correct 44 ms 212316 KB Output is correct
25 Correct 43 ms 212312 KB Output is correct
26 Correct 43 ms 212020 KB Output is correct
27 Correct 44 ms 212060 KB Output is correct
28 Correct 50 ms 212072 KB Output is correct
29 Correct 46 ms 211996 KB Output is correct
30 Correct 47 ms 212040 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 51 ms 211700 KB Output is correct
2 Correct 42 ms 211656 KB Output is correct
3 Correct 50 ms 211792 KB Output is correct
4 Correct 43 ms 211804 KB Output is correct
5 Correct 43 ms 211792 KB Output is correct
6 Correct 52 ms 212376 KB Output is correct
7 Correct 44 ms 212308 KB Output is correct
8 Correct 47 ms 212316 KB Output is correct
9 Correct 49 ms 212360 KB Output is correct
10 Correct 49 ms 212304 KB Output is correct
11 Correct 43 ms 212144 KB Output is correct
12 Correct 44 ms 212048 KB Output is correct
13 Correct 63 ms 212052 KB Output is correct
14 Correct 43 ms 212060 KB Output is correct
15 Correct 50 ms 212308 KB Output is correct
16 Correct 44 ms 212352 KB Output is correct
17 Correct 50 ms 212564 KB Output is correct
18 Correct 44 ms 212316 KB Output is correct
19 Correct 45 ms 212252 KB Output is correct
20 Correct 45 ms 212136 KB Output is correct
21 Correct 47 ms 211964 KB Output is correct
22 Correct 45 ms 212408 KB Output is correct
23 Correct 45 ms 212396 KB Output is correct
24 Correct 44 ms 212316 KB Output is correct
25 Correct 43 ms 212312 KB Output is correct
26 Correct 43 ms 212020 KB Output is correct
27 Correct 44 ms 212060 KB Output is correct
28 Correct 50 ms 212072 KB Output is correct
29 Correct 46 ms 211996 KB Output is correct
30 Correct 47 ms 212040 KB Output is correct
31 Correct 1342 ms 364392 KB Output is correct
32 Correct 133 ms 229584 KB Output is correct
33 Correct 1324 ms 366624 KB Output is correct
34 Correct 1307 ms 363212 KB Output is correct
35 Correct 1322 ms 364680 KB Output is correct
36 Correct 1323 ms 365140 KB Output is correct
37 Correct 961 ms 350448 KB Output is correct
38 Correct 876 ms 352592 KB Output is correct
39 Correct 755 ms 324056 KB Output is correct
40 Correct 749 ms 332236 KB Output is correct
41 Correct 864 ms 312740 KB Output is correct
42 Correct 830 ms 314948 KB Output is correct
43 Correct 98 ms 225092 KB Output is correct
44 Correct 842 ms 310820 KB Output is correct
45 Correct 823 ms 301660 KB Output is correct
46 Correct 716 ms 284716 KB Output is correct
47 Correct 474 ms 277928 KB Output is correct
48 Correct 452 ms 274552 KB Output is correct
49 Correct 537 ms 289644 KB Output is correct
50 Correct 606 ms 306608 KB Output is correct
51 Correct 562 ms 282932 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2118 ms 864552 KB Output is correct
2 Correct 2153 ms 851092 KB Output is correct
3 Correct 1884 ms 923900 KB Output is correct
4 Correct 2113 ms 858516 KB Output is correct
5 Correct 1814 ms 864980 KB Output is correct
6 Correct 2008 ms 875784 KB Output is correct
7 Correct 1885 ms 853600 KB Output is correct
8 Correct 2149 ms 833140 KB Output is correct
9 Correct 2310 ms 909664 KB Output is correct
10 Correct 2324 ms 852672 KB Output is correct
11 Correct 1923 ms 861768 KB Output is correct
12 Correct 2224 ms 862584 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Execution timed out 5125 ms 963088 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 51 ms 211700 KB Output is correct
2 Correct 42 ms 211656 KB Output is correct
3 Correct 50 ms 211792 KB Output is correct
4 Correct 43 ms 211804 KB Output is correct
5 Correct 43 ms 211792 KB Output is correct
6 Correct 52 ms 212376 KB Output is correct
7 Correct 44 ms 212308 KB Output is correct
8 Correct 47 ms 212316 KB Output is correct
9 Correct 49 ms 212360 KB Output is correct
10 Correct 49 ms 212304 KB Output is correct
11 Correct 43 ms 212144 KB Output is correct
12 Correct 44 ms 212048 KB Output is correct
13 Correct 63 ms 212052 KB Output is correct
14 Correct 43 ms 212060 KB Output is correct
15 Correct 50 ms 212308 KB Output is correct
16 Correct 44 ms 212352 KB Output is correct
17 Correct 50 ms 212564 KB Output is correct
18 Correct 44 ms 212316 KB Output is correct
19 Correct 45 ms 212252 KB Output is correct
20 Correct 45 ms 212136 KB Output is correct
21 Correct 47 ms 211964 KB Output is correct
22 Correct 45 ms 212408 KB Output is correct
23 Correct 45 ms 212396 KB Output is correct
24 Correct 44 ms 212316 KB Output is correct
25 Correct 43 ms 212312 KB Output is correct
26 Correct 43 ms 212020 KB Output is correct
27 Correct 44 ms 212060 KB Output is correct
28 Correct 50 ms 212072 KB Output is correct
29 Correct 46 ms 211996 KB Output is correct
30 Correct 47 ms 212040 KB Output is correct
31 Correct 1342 ms 364392 KB Output is correct
32 Correct 133 ms 229584 KB Output is correct
33 Correct 1324 ms 366624 KB Output is correct
34 Correct 1307 ms 363212 KB Output is correct
35 Correct 1322 ms 364680 KB Output is correct
36 Correct 1323 ms 365140 KB Output is correct
37 Correct 961 ms 350448 KB Output is correct
38 Correct 876 ms 352592 KB Output is correct
39 Correct 755 ms 324056 KB Output is correct
40 Correct 749 ms 332236 KB Output is correct
41 Correct 864 ms 312740 KB Output is correct
42 Correct 830 ms 314948 KB Output is correct
43 Correct 98 ms 225092 KB Output is correct
44 Correct 842 ms 310820 KB Output is correct
45 Correct 823 ms 301660 KB Output is correct
46 Correct 716 ms 284716 KB Output is correct
47 Correct 474 ms 277928 KB Output is correct
48 Correct 452 ms 274552 KB Output is correct
49 Correct 537 ms 289644 KB Output is correct
50 Correct 606 ms 306608 KB Output is correct
51 Correct 562 ms 282932 KB Output is correct
52 Correct 719 ms 345096 KB Output is correct
53 Correct 737 ms 348268 KB Output is correct
54 Correct 963 ms 348924 KB Output is correct
55 Correct 762 ms 326472 KB Output is correct
56 Correct 723 ms 333308 KB Output is correct
57 Correct 724 ms 318072 KB Output is correct
58 Correct 700 ms 329328 KB Output is correct
59 Correct 681 ms 335096 KB Output is correct
60 Correct 769 ms 319024 KB Output is correct
61 Correct 139 ms 247692 KB Output is correct
62 Correct 615 ms 356612 KB Output is correct
63 Correct 675 ms 342652 KB Output is correct
64 Correct 713 ms 343924 KB Output is correct
65 Correct 764 ms 338908 KB Output is correct
66 Correct 752 ms 320384 KB Output is correct
67 Correct 216 ms 247864 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 51 ms 211700 KB Output is correct
2 Correct 42 ms 211656 KB Output is correct
3 Correct 50 ms 211792 KB Output is correct
4 Correct 43 ms 211804 KB Output is correct
5 Correct 43 ms 211792 KB Output is correct
6 Correct 52 ms 212376 KB Output is correct
7 Correct 44 ms 212308 KB Output is correct
8 Correct 47 ms 212316 KB Output is correct
9 Correct 49 ms 212360 KB Output is correct
10 Correct 49 ms 212304 KB Output is correct
11 Correct 43 ms 212144 KB Output is correct
12 Correct 44 ms 212048 KB Output is correct
13 Correct 63 ms 212052 KB Output is correct
14 Correct 43 ms 212060 KB Output is correct
15 Correct 50 ms 212308 KB Output is correct
16 Correct 44 ms 212352 KB Output is correct
17 Correct 50 ms 212564 KB Output is correct
18 Correct 44 ms 212316 KB Output is correct
19 Correct 45 ms 212252 KB Output is correct
20 Correct 45 ms 212136 KB Output is correct
21 Correct 47 ms 211964 KB Output is correct
22 Correct 45 ms 212408 KB Output is correct
23 Correct 45 ms 212396 KB Output is correct
24 Correct 44 ms 212316 KB Output is correct
25 Correct 43 ms 212312 KB Output is correct
26 Correct 43 ms 212020 KB Output is correct
27 Correct 44 ms 212060 KB Output is correct
28 Correct 50 ms 212072 KB Output is correct
29 Correct 46 ms 211996 KB Output is correct
30 Correct 47 ms 212040 KB Output is correct
31 Correct 1342 ms 364392 KB Output is correct
32 Correct 133 ms 229584 KB Output is correct
33 Correct 1324 ms 366624 KB Output is correct
34 Correct 1307 ms 363212 KB Output is correct
35 Correct 1322 ms 364680 KB Output is correct
36 Correct 1323 ms 365140 KB Output is correct
37 Correct 961 ms 350448 KB Output is correct
38 Correct 876 ms 352592 KB Output is correct
39 Correct 755 ms 324056 KB Output is correct
40 Correct 749 ms 332236 KB Output is correct
41 Correct 864 ms 312740 KB Output is correct
42 Correct 830 ms 314948 KB Output is correct
43 Correct 98 ms 225092 KB Output is correct
44 Correct 842 ms 310820 KB Output is correct
45 Correct 823 ms 301660 KB Output is correct
46 Correct 716 ms 284716 KB Output is correct
47 Correct 474 ms 277928 KB Output is correct
48 Correct 452 ms 274552 KB Output is correct
49 Correct 537 ms 289644 KB Output is correct
50 Correct 606 ms 306608 KB Output is correct
51 Correct 562 ms 282932 KB Output is correct
52 Correct 2118 ms 864552 KB Output is correct
53 Correct 2153 ms 851092 KB Output is correct
54 Correct 1884 ms 923900 KB Output is correct
55 Correct 2113 ms 858516 KB Output is correct
56 Correct 1814 ms 864980 KB Output is correct
57 Correct 2008 ms 875784 KB Output is correct
58 Correct 1885 ms 853600 KB Output is correct
59 Correct 2149 ms 833140 KB Output is correct
60 Correct 2310 ms 909664 KB Output is correct
61 Correct 2324 ms 852672 KB Output is correct
62 Correct 1923 ms 861768 KB Output is correct
63 Correct 2224 ms 862584 KB Output is correct
64 Execution timed out 5125 ms 963088 KB Time limit exceeded
65 Halted 0 ms 0 KB -